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Abstract This paper presents relations between the drift and the diffusion coef-
ficients of a diffusion in terms of the prices of a European call option, giving an
extension to the Dupire formula. Due to the correspondence between the call option
prices and the marginal distributions of the underlying process, a necessary con-
dition for a diffusion with given marginal distributions is obtained. Some specific
examples, including the the cases of Normal and Lognormal marginals, are con-
sidered. In particular, we construct fake Brownian motion diffusions, a family of
diffusions, which all are Gaussian processes with Brownian marginals N(0, t) but
not a Brownian motion unless σ2 = 1.

1 Introduction

Motivated by Hamza and Klebaner, [9], where a family of processes with Normal
marginal distributions was constructed, Mudakkar [15] considered diffusion pro-
cesses with Normal marginals and obtained a necessary relation between the drift
and the diffusion coefficients. In this paper, we generalised Mudakkar’s result via
a Dupire-like formula. We derive a general version of Dupire formula. Under the
assumption of Normal marginal distributions, we recover Mudakkar’s result. We
can also extend the result to other types of distributions, such as the Lognormal
distribution.

The topic of constructing processes with given marginal distributions, also known
as mimicking, has been of interest of many in the last two decades. For example,
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[1, 2, 3, 9, 16] gave explicit constructions to mimic Brownian motion, i.e. construct
processes of marginals N(0, t). Generalisation from [9] to mimicking self-similar
processes was carried out in [7]. For Ito processes, studies include [4, 8, 12]. In the
monograph [11] by Hirsch, Profeta, Roynette and Yor on peacocks (processes that
are increasing in the convex order), a few methods for constructing processes with
given marginals are also discussed.

We give the main results in Section 2 and postpone the proofs to Section 3. In
Section 4, we will consider some examples.

2 A general version of Dupire formula

Consider a local martingale (Xt)t≥0 satisfying the stochastic differential equation
dXt = σ(Xt , t)dBt . Let C(x, t) = E[(Xt − x)+], the price of a call option with strike
x and maturity t. Then, the relation between the functions σ and C is given by the
well-known Dupire formula [6]

σ
2(x, t) =

2 ∂C
∂ t (x, t)

∂ 2C
∂x2 (x, t)

, (1)

or ∂C
∂ t (x, t) =

1
2 σ2(x, t) ∂ 2C

∂x2 (·, t). Note that the probability density function of Xt , if

exists, coincides with ∂ 2C
∂x2 . Thus, (1) gives the unique diffusion with given marginal

distributions. (In this paper, we assume that the distribution of Xt is absolutely con-
tinuous with respect to the Lebesgue measure, i.e. the probability density function
exists, and that E[(Xt − x)+] is finite.)

This can be generalised to semimartingales as follows.

Theorem 1. Let (Xt)t≥0 be a diffusion process satisfying

dXt = µ(Xt , t)dt +σ(Xt , t)dBt , (2)

with
∫ t

0 σ2(Xs,s)ds < ∞. And, let C(x, t) = E[(Xt − x)+]. Then,

∂C
∂ t

(x, t) =
1
2

σ
2(x, t)

∂ 2C
∂x2 (x, t)+

∫
∞

x
µ(y, t)

∂ 2C
∂x2 (y, t)dy, (3)

equivalently,

∂C
∂ t

(x, t) =
1
2

σ
2(x, t)

∂ 2C
∂x2 (x, t)+E[µ(Xt , t)1Xt>x]. (4)

From the put-call parity, we can establish a relation similar to (4) but with put
option prices P(x, t) = E

[
(x−Xt)

+
]
. Note that
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∂P
∂x

(x, t) =
∫ x

−∞

pt(y)dy = 1+
∂C
∂x

(x, t) (5)

and
∂ 2P
∂x2 (x, t) = pt(x) =

∂ 2C
∂x2 (x, t). (6)

Proposition 1. Let (Xt)t≥0 satisfies SDE (2), and let P(x, t) = E
[
(x−Xt)

+
]
. Then,

∂P
∂ t

(x, t) =
1
2

σ
2(x, t)

∂ 2P
∂x2 (x, t)−E

[
µ(Xt , t)1Xt<x

]
. (7)

Comparing (4) and (7), we see that

∂C
∂ t

(x, t)− ∂P
∂ t

(x, t) = E[µ(Xt , t)].

Remark 1. To get an expression relating µ(x, t) and σ(x, t) without integral, we dif-
ferentiate (3) with respect to x, resulting in

∂ 2C
∂x∂ t

(x, t) =
1
2

σ
2(x, t)

∂ 3C
∂x3 (x, t)+

1
2

∂

∂x

{
σ

2(x, t)
}∂ 2C

∂x2 (x, t)−µ(x, t)
∂ 2C
∂x2 (x, t).

(8)
The “put” version follows from (5) and (6),

∂ 2P
∂x∂ t

(x, t) =
1
2

σ
2(x, t)

∂ 3P
∂x3 (x, t)+

1
2

∂

∂x

{
σ

2(x, t)
}∂ 2P

∂x2 (x, t)−µ(x, t)
∂ 2P
∂x2 (x, t),

which can also be obtained from (7).

One can easily see that, when µ(y, t) = 0, (3) reduces to the classical Dupire
formula (1), and when µ(y, t) = µ(t), (3) becomes

∂C
∂ t

(x, t) =
1
2

σ
2(x, t)

∂ 2C
∂x2 (x, t)−µ(t)

∂C
∂x

(x, t),

which is also a known result (see for example [5]). Thus, (3) can be considered as a
general version of the Dupire formula.

3 Proofs

There are a few ways to derive (3) and prove Theorem 1. The usual approach is
through the forward Kolmogorov equation. Alternatively, it can be obtained through
the Meyer-Tanaka formula and local times, like in [10] and [13]. Detailed derivation
by the two approaches will be given in Sections 3.1 and 3.2.
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3.1 Proof of Theorem 1 by forward Kolmogorov equation

This proof requires further assumptions and is given as a motivation.
Let (Xt)t≥0 be a process satisfying the SDE (2). Denote by p(y, t) the density

function of Xt at point y. Suppose that µ(x, t) and σ(x, t) are bounded and continu-
ous, with σ2(x, t) bounded away from 0; that µ(x, t) and σ2(x, t) are Holder contin-
uous with respect to x and t; and that µ(x, t) and σ(x, t) have two partial derivatives
with respect to x, which are bounded and Holder continuous with respect to x. (See
[14, Theorem 5.15], for example.) Then, we have the forward Kolmogorov equation

∂ p
∂ t

(y, t) =
1
2

∂ 2

∂y2

{
σ

2(y, t)p(y, t)
}
− ∂

∂y

{
µ(y, t)p(y, t)

}
. (9)

Before we proceed, we give the derivatives concerning the function

C(x, t) = E[(Xt − x)+] =
∫

∞

x
(y− x)p(y, t)dy.

Differentiate with respect to x, we have

∂C
∂x

(x, t) =−
∫

∞

x
p(y, t)dy

and
∂ 2C
∂x2 (x, t) = p(x, t).

Suppose that for ∂ p
∂ t (y, t) exists almost everywhere and that

∫ b
a
∫

∞

x |(y−x) ∂ p
∂ t (y, t)|dydt

is finite for any compact time interval [a,b] and any x. Then, we also have

∂C
∂ t

(x, t) =
∫

∞

x
(y− x)

∂ p
∂ t

(y, t)dy.

Now, multiply both sides of (9) by (y− x)+ and integrate with respect to y, we
obtain∫

∞

x
(y− x)

∂ p
∂ t

(y, t)dy

=
1
2

∫
∞

x
(y− x)

∂ 2

∂y2

{
σ

2(y, t)p(y, t)
}

dy−
∫

∞

x
(y− x)

∂

∂y

{
µ(y, t)p(y, t)

}
dy. (10)

By integration by parts, the last integral∫
∞

x
(y− x)

∂

∂y

{
µ(y, t)p(y, t)

}
dy =

[
(y− x)µ(y, t)p(y, t)

]∞

x
−
∫

∞

x
µ(y, t)p(y, t)dy

=−
∫

∞

x
µ(y, t)p(y, t)dy,
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assuming that limy→∞ µ(y, t)p(y, t) = 0. Similarly, the first integral on the right hand
side of (10)∫

∞

x
(y− x)

∂ 2

∂y2

{
σ

2(y, t)p(y, t)
}

dy

=
[
(y− x)

∂

∂y

{
σ

2(y, t)p(y, t)
}]∞

x
−
∫

∞

x

∂

∂y

{
σ

2(y, t)p(y, t)
}

dy

=−
[
σ

2(y, t)p(y, t)
]∞

x
= σ

2(x, t)p(x, t),

assuming that limy→∞
∂

∂y

{
σ2(y, t)p(y, t)

}
= 0 and limy→∞ σ2(y, t)p(y, t) = 0. Thus,

Equation (10) yields the general Dupire formula (3), or (4) equivalently.
Note that in this proof we require limy→∞ µ(y, t)p(y, t), limy→∞ σ2(y, t)p(y, t)

and limy→∞
∂

∂y

{
σ2(y, t)p(y, t)

}
to be zero. We also assume that ∂ p

∂ t (y, t) exists and∫ b
a
∫

∞

x |(y− x) ∂ p
∂ t (y, t)|dydt < ∞ for any time interval [a,b] and any x. These further

assumptions are not required in an alternative proof showing in the next section.

3.2 Proof of Theorem 1 by Meyer-Tanaka formula

Following [10] and [13], we give an alternative derivation of the general Dupire
formula (3) through the local time of X . By the Meyer-Tanaka formula, we have

(Xt − x)+ = (X0− x)++
∫ t

0
1Xs>x dXs +

1
2

Lx
t , (11)

where Lx
t denotes the local time of X at point x. Take expectation on both sides and

use the SDE of X ,

E
[
(Xt − x)+

]
= E

[
(X0− x)+

]
+
∫ t

0
E
[
µ(Xs,s)1Xs>x

]
ds+

1
2
E
[
Lx

t
]
. (12)

Taking expectation of the occupation times formula, we have, for any positive mea-
surable function g,∫

g(x)E
[
Lx

t
]
dx = E

[∫ t

0
g(Xs)d 〈X〉s

]
=
∫ t

0
E
[

g(Xs)
d 〈X〉s

ds

]
ds

=
∫ t

0
E
[
g(Xs)σ

2(Xs,s)
]
ds =

∫ t

0

∫
g(x)σ2(x,s)ps(x)dxds

=
∫

g(x)
∫ t

0
σ

2(x,s)ps(x)dsdx.

Thus, E
[
Lx

t
]
=
∫ t

0 σ2(x,s)ps(x)ds. Substituting this into (12), and taking derivative
with respect to t, we have
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∂

∂ t
E
[
(Xt − x)+

]
= E

[
µ(Xt , t)1Xt>x

]
+

1
2

σ
2(x, t)pt(x),

which is the general Dupire formula (3).

3.3 Proof of Proposition 1

As (x−Xt)
+ = (Xt − x)+− (Xt − x), using (11) we have

(x−Xt)
+ = (X0− x)++

∫ t

0
1Xs>x dXs +

1
2

Lx
t − (Xt − x)

= (x−X0)
++

∫ t

0
(1Xs>x−1)dXs +

1
2

Lx
t

= (x−X0)
+−

∫ t

0
1Xs<xdXs +

1
2

Lx
t .

Taking expectation, we have

E
[
(x−Xt)

+
]
= E

[
(x−X0)

+
]
−
∫ t

0
E
[
µ(Xs,s)1Xs<x

]
ds+

1
2

∫ t

0
σ

2(x,s)ps(x)ds,

where ps(x) is the probability density function of Xs. Differentiate with respect to t,
we obtain (7), the “put” version of (3).

4 Some examples on diffusion with given marginals

As the function C uniquely determines the marginal distributions of the process
X , (3) and (8) serve as necessary conditions for the diffusion X to match a given
marginal distributions. In this section, we derive from Theorem 1 a necessary rela-
tion between the drift and diffusion coefficients of X for some specific marginals.
For the Normal marginals, the result coincides with Mudakkar [15]. We will also
consider the Lognormal marginals and marginals that satisfy selfsimilarity. Some
specific examples are also given in this section.

In the following, we will write φ(·) for the probability density function of N(0,1)
and Φ(·) for the cumulative distribution function of N(0,1).

4.1 Diffusion with Normal marginals

Suppose that Xt ∼N(at ,γt), γt > 0, then writing Z for a N(0,1) random variable, we
have
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C(x, t) = E[(Xt − x)+] =
√

γtφ

(x−at√
γt

)
+(at − x)

(
1−Φ

(x−at√
γt

))
.

Proposition 2. Assume that (Xt)t≥0 has marginals N(at ,γt) and satisfies the SDE
(2). Then the coefficients satisfy

µ(x, t) = a′t +
1
2

∂

∂x

{
σ

2(x, t)
}
+

x−at

2γt

(
γ
′
t −σ

2(x, t)
)
. (13)

Proof. Computing the partial derivatives of C(x, t) and using the fact that φ ′(z) =
−zφ(z), we obtain

∂C
∂ t

=
γ ′t

2
√

γt
φ

(x−at√
γt

)
+a′t

(
1−Φ

(x−at√
γt

))
,

∂ 2C
∂x2 =

1
√

γt
φ

(x−at√
γt

)
.

Therefore, Equation (3) gives

γ ′t
2
√

γt
φ

(x−at√
γt

)
+a′t

(
1−Φ

(x−at√
γt

))
=

1
2

σ
2(x, t)

1
√

γt
φ

(x−at√
γt

)
+
∫

∞

x
µ(y, t)

1
√

γt
φ

(y−at√
γt

)
dy. (14)

Differentiate with respect to x and simplify, we obtain

−γ ′t (x−at)

2γt
−a′t =−

1
2

σ
2(x, t)

x−at

γt
+

1
2

∂

∂x

{
σ

2(x, t)
}
−µ(x, t).

ut

Example 1. Suppose µ(x, t) = 0 and let X0 = x0, i.e. Xt = x0 +
∫ t

0 σ(Xs,s)dBs. Then,
at = x0 and (14) gives

σ
2(x, t) = γ

′
t

as a necessary condition for X to have Normal marginals. In particular, σ2(x, t) does
not depend on x.

Example 2. Suppose µ(x, t) = µtx and σ(x, t) = σtx, where µt and σt are functions
of t only, i.e.

dXt = µtXtdt +σtXtdBt .

Since dXt = XtdRt , with dRt = µtdt +σtdBt , X is the stochastic exponential of R,
so that

Xt = X0 exp
(

Rt −
1
2
[R,R]t

)
= X0 exp

(∫ t

0
(µs−

1
2

σ
2
s )ds+

∫ t

0
σsdBs

)
.
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We will show that σt must be zero for the process to have a Normal marginals,
provided X0 has a normal distribution. Moreover, the mean and variance at and γt
must be of a certain exponential form of µt . Proposition 2 gives

µtx = a′t + xσ
2
t +

x−at

2γt
(γ ′t −σ

2
t x2)

for all x and t. Grouping the terms,

σ2
t

2γt
x3− atσ

2
t

2γt
x2 +

(
µt −σ

2
t −

γ ′t
2γt

)
x+

atγ
′
t

2γt
−a′t = 0,

thus, we must have

σ
2
t = 0 , µt =

γ ′t
2γt

, a′t = µtat .

The last two equations give

γt = γ0 exp
(

2
∫ t

0
µsds

)
and at = a0 exp

(∫ t

0
µsds

)
.

Note that the at and γt are consistent with the property of Xt = X0e
∫ t

0 µsds when X0 is
Normally distributed.

Example 3. Suppose µ(x, t) = µx and σ(x, t) = σ , where µ and σ are constant, i.e.

dXt = µXtdt +σdBt

and X is the Ornstein Uhlenbeck process. Under the assumption of Normal marginals,
Proposition 2 gives

µx = a′t +
x−at

2γt

(
γ
′
t −σ

2).
Thus, we must have

µ− γ ′t −σ2

2γt
= 0 and a′t −

at(γ
′
t −σ2)

2γt
= 0.

Solving the two equations, we arrive at

at = a0eµt and γt = e2µt
(

γ0 +
σ2

2µ
(1− e−2µt)

)
.

In this case equation (13) gives also sufficient conditions, because

Xt = eµt
(

X0 +
∫ t

0
σe−µsdBs

)
is a Gaussian process.
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Example 4 (Fake Brownian motion diffusions). Here we give an example of a fam-
ily of diffusions (indexed by σ ) which are all Gaussian processes with Brownian
marginals N(0, t) but not a Brownian motion unless σ2 = 1.

Let σ > 0 and α = 1
2 (σ

2−3). Define (Xt)t≥0 by

Xt = σt−(α+1)
∫ t

0
sα+1dBs, X0 = 0.

Note that the Ito integral is well defined because α =− 3
2 +

σ2

2 >− 3
2 . For any t > 0,

E[Xt ] = 0 and

Var(Xt) = σ
2t−2(α+1)

∫ t

0
s2(α+1)ds = t

as 2α+3= σ2. It is clear that X is continuous at 0 for α ≤−1. From the calculation
of variance, it follows that X is continuous at 0 in L2 also for α > −1. Thus, the
process (Xt)t≥0 is continuous at 0 for any σ > 0.

Note that X is a Gaussian process, with marginals N(0, t). Obtaining the SDE of
X , we have

dXt =
1−σ2

2t
Xtdt +σdBt .

With

at = 0, γt = t, µ(x, t) =
1−σ2

2t
x, σ(x, t) = σ ,

we see that equation (13) is indeed satisfied.
The process X is a Brownian motion only for σ = 1 (or α =−1). For σ 6= 1, X

is a martingale multiplied by a monotone function.
Remark that the covariance function, which also defines the process uniquely, is

given by, for u < t,

Cov(Xu,Xt) = σ
2(ut)−(α+1)

∫ u

0
s2α+2ds = uα+2t−α−1.

When σ2 = 1 (or α = −1), the above covariance function is that of Brownian mo-
tion.

4.2 Diffusion with Lognormal marginals

Suppose that the marginal distributions of X are LN(at ,γt). Let C(x, t) = E[(Xt −
x)+]. The function C and its derivatives can be computed as follows:
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C(x, t) = eat+
1
2 γt Φ

(at + γt − lnx
√

γt

)
− xΦ

(at − lnx
√

γt

)
,

∂C
∂x

(x, t) =−Φ

(at − lnx
√

γt

)
,

∂ 2C
∂x2 (x, t) =

1
x
√

γt
φ

(at − lnx
√

γt

)
,

∂ 2C
∂x∂ t

(x, t) =
(at − lnx)γ ′t −2γta′t

2γ
3/2
t

φ

(at − lnx
√

γt

)
,

∂ 3C
∂x3 (x, t) =

at − γt − lnx

x2γ
3/2
t

φ

(at − lnx
√

γt

)
.

Proposition 3. Assume that (Xt)t≥0 has marginals LN(at ,γt) and satisfies the SDE
(2). Then we must have

µ(x, t) =
1
2

∂

∂x

{
σ

2(x, t)
}
+

at − γt − lnx
2xγt

σ
2(x, t)− x(at − lnx)γ ′t

2γt
+ xa′t .

Proof. This follows from (8). ut

Example 5. Suppose that µ(x, t) = 0 and at = a0. Under the assumption of Lognor-
mal marginals, the diffusion coefficient must satisfy

xγt
∂

∂x

{
σ

2(x, t)
}
+(a0− γt − lnx)σ2(x, t)− x2(a0− lnx)γ ′t = 0,

due to Proposition 3. Suppose σ(0, t) = 0. Solving for σ2(x, t), we obtain

σ
2(x, t) = γ

′
t x

2−lnx/(2γt ) exp
( (lnx)2

2γt

)
−
√

2πγtγ
′
t x

1−a0/γt exp
( (a0− γt)

2 +(lnx)2

2γt

)
Φ

( lnx−a0− γt√
γ

)
as a necessary condition for matching the marginal distributions. In particular, if
a0 = 0 and γt = t, we must have

σ
2(x, t) = x2−lnx/(2t) exp

( (lnx)2

2t

)
−
√

2πtxexp
( t2 +(lnx)2

2t

)
Φ

( lnx− t√
t

)
for the SDE dXt = σ(Xt , t)dBt to have the LN(0, t) marginal distributions.

Example 6. Suppose µ(x, t) = µtx and σ(x, t) = σtx, where µt and σt are functions
of t only, i.e.

dXt = µtXtdt +σtXtdBt .

Under the Lognormal regime, Proposition 3 gives
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µtx = xσ
2
t +

at − γt − lnx
2γt

xσ
2
t −

x(at − lnx)γ ′t
2γt

+ xa′t ,

that is,

µt −a′t −
(1

2
+

at

2γt

)
σ

2
t +

at

2γt
γ
′
t =
(

γ ′t
2γt
− σ2

t

2γt

)
lnx.

Therefore, we must have

σ
2
t = γ

′
t and µt −a′t −

1
2

σ
2
t = 0. (15)

Checking this with the solution to the SDE,

Xt = X0e
∫ t

0(µs− 1
2 σ2

s )ds+
∫ t

0 σsdBs ,

which has marginal distribution

LN
(

lnx0 +
∫ t

0

(
µs−

1
2

σ
2
s

)
ds,
∫ t

0
σ

2
s ds
)
,

(15) is indeed satisfied.

Example 7 (Fake Lognormal diffusions). Let Yt = eXt , where X is the process in
Example 4. Then Y has marginal distribution LN(0, t) and

dYt = eXt dXt +
1
2

eXt (dXt)
2

= σYtdBt +
(1

2
σ

2− (α +1)
1
t

lnYt

)
Ytdt.

That is, µ(x, t) =
( 1

2 σ2− (α +1) 1
t lnx

)
x and σ(x, t) = σx. We can see that, as α +

1 = σ2−1
2 , we have

1
2

∂

∂x

{
σ

2(x, t)
}
+

at − γt − lnx
2xγt

σ
2(x, t)− x(at − lnx)γ ′t

2γt
+ xa′t

=
1
2

σ
2x+(1−σ

2)
x lnx

2t
= µ,

which is consistent with Proposition 3.

4.3 Selfsimilar diffusion

In a more general case, suppose that a diffusion process (Xt)t≥0, satisfying SDE (2),
is selfsimilar. Its marginal densities (pt(·))t≥0 satisfies the scaling property pt(y) =
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t−κ p1(yt−κ) for all t, for some κ > 0. We also have

∂C
∂x

=−P(Xt ≥ x) = P(Xt < x)−1 = P(X1 < xt−κ)−1

=
∫ xt−κ

−∞

p1(y)dy =
∫ t

−∞

−κxy−κ−1 p1(xy−κ)dy

and
∂ 2C
∂x∂ t

=−κxt−κ−1 p1(xt−κ).

Then, Equation (8) simplifies to

κxt−1 p1(xt−κ)+

(
1
2

∂

∂x

{
σ

2(x, t)
}
−µ(x, t)

)
p1(xt−κ)+

1
2

σ
2(x, t)t−κ p′1(xt−κ)= 0,

or,

κxt−1 pt(x)+
(

1
2

∂

∂x

{
σ

2(x, t)
}
−µ(x, t)

)
pt(x)+

1
2

σ
2(x, t)

∂

∂x

{
pt(x)

}
= 0.
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