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Abstract In stochastic multi-factor commodity models, it is often the case that fu-
tures prices are explained by two latent state variables which represent the short
and long term stochastic factors. In this work, we develop the family of stochastic
models using polynomial diffusion to obtain the unobservable spot price to be used
for modelling futures curve dynamics. The polynomial family of diffusion models
allows one to incorporate a variety of non-linear, higher-order effects, into a multi-
factor stochastic model, which is a generalisation of Schwartz and Smith [17] two-
factor model. Two filtering methods are used for the parameter and the latent factor
estimation to address the non-linearity. We provide a comparative analysis of the
performance of the estimation procedures. We discuss the parameter identification
problem present in the polynomial diffusion case, regardless, the futures prices can
still be estimated accurately. Moreover, we study the effects of different methods of
calculating matrix exponential in the polynomial diffusion model. As the polyno-
mial order increases, accurately and efficiently approximating the high-dimensional
matrix exponential becomes essential in the polynomial diffusion model.
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1 Introduction

Stochastic models employed in the analysis of commodity futures play a impor-
tant role in various financial areas, including price forecasting, risk management,
portfolio optimisation. In contrast to other commodities that are traded in both spot
and futures markets, crude oil is primarily traded in the futures market. As a con-
sequence, it becomes impractical to directly estimate the price of crude oil futures
based on the spot price. Instead, people usually model the underlying spot price,
denoted as St , as a function of certain factors. Under the assumption of an arbitrage-
free market, the futures price at current time t, denoted as Ft,T , is equivalent to the
expected spot price at maturity time T :

Ft,T = E∗(ST |Ft), (1)

where Ft be a natural σ -algebra generated up to time t and E∗(·) is the expec-
tation taken with respect to the risk-neutral processes. Under this framework, the
derivation of a closed-form expression of Ft,T necessitates an accurate distribution
of St . Consequently, this requirement imposes additional constraints on the factors
involved in the modelling process.

Over the past few decades, stochastic processes have been employed to model
the factors. In 1990, the Ornstein-Uhlenbeck (OU) process was introduced for the
modelling of oil futures in a two-factor setup to represent spot price and conve-
nience yield [10]. Building upon this work, Schwartz and Smith [17] modelled the
logarithm of the underlying spot price of crude oil futures as the sum of two hidden
factors. These factors, assumed to follow the OU process, capture short-term fluc-
tuation and long-term equilibrium price level, respectively. Subsequently, this latent
factor model and its extensions became widely utilized in stochastic modelling.

Researchers have further extended this model to enhance its applicability. In
the electricity market, a multi-factor model including a deterministic seasonality
with additional stochastic factors were modelled by Levy processes in [6]. A time-
changed Levy process were commonly used in option pricing to describe the jump
behaviour and dynamics of volatility in [3, 7, 11]. Sorensen [18] extended the model
by introducing three hidden factors, including an additional deterministic seasonal
component, to capture the dynamics of agricultural commodity prices. In [12], the
authors focused on direct modelling of the electricity futures prices instead of mod-
elling of electricity spot price first. Ames et al. [1] incorporated time-varying drift
and speed of mean reversion parameters in their modelling of crude oil futures.
Favetto and Samson [8] applied this model in the field of biology, and used both
maximum likelihood and expectation maximization methods for parameter estima-
tions. Further, the performance of the multi-factor model in deriving spot prices
was improved by incorporating the analyst’s forecasts for futures prices, as demon-
strated in [4]. Peters et al. [15] developed a partial Markov Chain Monte Carlo
method to deal with the non-linear non-Gaussian multi-factor model. Comparing
different models is also of significance. Schwartz [16] compared models with up
to three factors, including a hidden factor, convenience yield and interest rate, for
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copper, oil and gold. Cortazar and Naranjo [5] compared the performance of one-
to four-factor models in crude oil futures, and found that the three-factor and four-
factor models excelled in explaining the term structure of futures prices, while the
four-factor model outperformed others in fitting the volatility term structure.

While this framework has gained popularity in the past two decades, it does pos-
sess certain limitations. Firstly, as previously mentioned, obtaining a closed-form
expression of futures price necessitates an accurate distribution of spot price St . To
address this issue, it is common practice to assume that all factors involved follow
a Gaussian distribution, and the logarithm of spot price is a linear function of these
factors. This assumption ensures a log-normal distribution of the spot price. Sec-
ondly, under this framework, it is common to model the logarithm of spot price.
In most instances, this poses no significant problems. However, a noticeable event
occurred on 20th April 2020 when the front-month May 2020 WTI crude oil futures
settled at a unprecedented value of -$37.63 per barrel on the New York Mercantile
Exchange. This exceedingly rare phenomenon significantly changes the validity of
the entire framework.

This paper aims to address the aforementioned limitations by introducing a poly-
nomial diffusion framework that allows for a more complicated structure of the spot
price. The mathematical foundations were introduced in [9]. Under the polynomial
diffusion framework, the spot price is represented as a polynomial of any order in
terms of the factors. In particular, under certain conditions, it can be proven that the
conditional expectation of spot price, which is equivalent to the futures price under
the assumption of an arbitrage-free market, is also a polynomial in terms of factors.
An application of this framework can be found in the modelling of electricity for-
wards, where the spot price is represented by a quadratic form of two factors [13].
Additionally, in this study, the Quadratic Kalman Filter was employed to estimate
model parameters and unknown state variables. The state space was augmented to
include both linear and quadratic terms of the factors. However, as the order of the
polynomial increases, the dimension of the state space grows exponentially, mak-
ing it challenging to derive the explicit form of the augmented state equations. To
address this issue, we propose the use of the Extended Kalman Filter (EKF) and
Unscented Kalman Filter (UKF). These methods provide effective tools for estimat-
ing parameters and the state variables within the context of the polynomial diffusion
framework. The EKF and UKF help overcome the computational challenges asso-
ciated with higher-order polynomial models, enabling the practical implementation
of this framework.

This paper is structured as follows. In Sect. 2 and Sect. 3, we present the two
aforementioned frameworks for the pricing of commodity futures. The first frame-
work extends the Schwartz-Smith two-factor model [17], while the second frame-
work models the spot price using polynomial forms. In the second framework, poly-
nomial diffusion is employed to price the futures contracts. Sect. 4 introduces the
Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) as estimation
methods for the hidden factors and unknown parameters in the polynomial diffusion
models. These filters are specifically designed to handle the non-linear dynamics
present in the models. Sect. 5 presents a numerical analysis of the applications of the
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polynomial diffusion model. Firstly, we compare seven different methods for calcu-
lating the matrix exponential, which is required in the polynomial diffusion model.
Our results indicate that the eigen-decomposition method provides an efficient and
accurate approximation of the matrix exponential. Next, we evaluate the perfor-
mance of the polynomial diffusion model through a simulation study. While the
futures contracts can be estimated accurately, parameter estimation remains chal-
lenging, even when separating parameters in the state equation and the coordinate
representations in the measurement equation. As a consequence, selecting the order
of the polynomial diffusion model proves to be a challenging task, and further study
on constraints is required. Finally, Sect. 6 concludes the paper.

2 Schwartz-Smith Two-Factor Model

In this section, we describe a classical approach to modelling commodity futures,
which is an extension of [17].

This approach models the logarithm of spot price St as the sum of two unobserv-
able factors χt and ξt ,

log(St) = χt +ξt , (2)

where χt represents the short-term fluctuation and ξt is the long-term equilibrium
price level. We assume both χt and ξt follow an OU process,

dχt =−κχtdt +σχ dW χ

t , (3)

and
dξt = (µξ − γξt)dt +σξ dW ξ

t , (4)

while in [17] only one factor follows the OU process. We assume the changes in
the short-term factor χt are temporary and converging to 0 as t→ ∞. The processes
(W χ

t )t≥0 and (W ξ

t )t≥0 are correlated standard Brownian Motions with correlation
coefficient ρ . Here, κ,γ ∈ R+ are the speed of mean-reversion parameters; µξ ∈ R
is the mean level of the long-term factor; σχ ,σξ ∈ R+ are the volatility parameters;
and λχ ,λξ ∈ R are risk premiums.

By assuming a constant risk premium λχ and λξ , the risk-neutral processes of χt
and ξt are given by

dχt = (−κχt −λχ)dt +σχ dW χ∗
t , (5)

and
dξt = (µξ − γξt −λξ )dt +σξ dW ξ∗

t , (6)

where W χ∗
t and W ξ∗

t are correlated standard Brownian Motions with correlation
coefficient ρ . This approach stems from the risk-neutral futures pricing theory de-
veloped in [2].

Let Ft be a natural σ -algebra generated up to time t. In discrete time, given the
initial values χt0 and ξt0 , χt and ξt are jointly normally distributed with mean
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E∗
([

χt
ξt

]∣∣∣∣Ft0

)
=

 e−κ(t−t0)χt0 −
λχ

κ

(
1− e−κ(t−t0)

)
e−γ(t−t0)ξt0 +

µξ−λξ

γ

(
1− e−γ(t−t0)

)
and covariance matrix

Cov∗
([

χt
ξt

]∣∣∣∣Ft0

)
=

[
1−e−2κ(t−t0)

2κ
σ2

χ
1−e−(κ+γ)(t−t0)

κ+γ
σχ σξ ρ

1−e−(κ+γ)(t−t0)

κ+γ
σχ σξ ρ

1−e−2γ(t−t0)

2γ
σ2

ξ

]
,

where E∗(·) and Cov∗(·) represent the expectation and covariance taken with respect
to the risk-neutral processes. Therefore, the spot price, which is defined in (2), is
log-normally distributed with

log[E∗(St |Ft0)] = E∗[log(St)|Ft0 ]+
1
2

Var∗[log(St)|Ft0 ]

= e−κ(t−t0)χt0 + e−γ(t−t0)ξt0 +A(t− t0), (7)

where

A(t) =−
λχ

κ
(1− e−κt)+

µξ −λξ

γ
(1− e−γt)

+
1
2

(
1− e−2κt

2κ
σ

2
χ +

1− e−2γt

2γ
σ

2
ξ
+2

1− e−(κ+γ)t

κ + γ
σχ σξ ρ

)
. (8)

Next, we derive the equations for the futures prices. Let Ft,T be the market price
of a futures contract at time t with maturity time T . For eliminating arbitrage, given
all information until time t, the futures price must be equal to the expected spot
price at the maturity time T . Therefore, under the risk-neutral measure, we have
(assuming the interest rate is not stochastic)

log(Ft,T ) = log [E∗(ST |Ft)] = e−κ(T−t)
χt + e−γ(T−t)

ξt +A(T − t).

After discretization, we have the following AR(1) dynamics for bivariate state vari-
able xt

xt = c+Ext−1 +wt , (9)

where

xt =

[
χt
ξt

]
, c =

[
0

µξ

γ

(
1− e−γ∆ t

)] , E =

[
e−κ∆ t 0

0 e−γ∆ t

]
,

and wt is a column vector of correlated normally distributed noises with E(wt) = 0
and

Cov(wt) = Σw =

[
1−e−2κ∆ t

2κ
σ2

χ
1−e−(κ+γ)∆ t

κ+γ
σχ σξ ρ

1−e−(κ+γ)∆ t

κ+γ
σχ σξ ρ

1−e−2γ∆ t

2γ
σ2

ξ

]
,
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∆ t is the time step between (t − 1) and t. Moreover, we have the measurement
equation

yt = dt +F>t xt + vt , (10)

where

yt = (log(Ft,T1), . . . , log(Ft,Tm))
> ,dt = (A(T1− t), . . . ,A(Tm− t))> ,

Ft =

[
e−κ(T1−t), . . . ,e−κ(Tm−t)

e−γ(T1−t), . . . ,e−γ(Tm−t)

]
,

and m is the number of futures contracts. vt is an m-dimensional vector of normally
distributed noises with E(vt) = 0 and

Cov(vt) = Σv =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

m

 .
The prediction error et = yt −E(yt |Ft−1) are supposed to be multivariate nor-

mally distributed. Therefore, the log-likelihood function of y = (y1, . . . ,yn) can be
written as

l(θ ;y) =−nm log(2π)

2
− 1

2

n

∑
t=1

[
log [det(Lt)]+ e>t L−1

t et

]
, (11)

where the set of unknown parameters θ = (κ,γ,µξ ,σχ ,σξ ,ρ,λχ ,λξ ,σ1, . . . ,σm); n
is the number of observations; m is the number of contracts; Lt = Cov(et). Given
all observations y, the maximum likelihood estimate (MLE) of θ is obtained by
maximising the log-likelihood function (11).

3 Polynomial Diffusion Model

In this section, we provide some important theorems of polynomial diffusions and
apply these theorems to the two-factor model. The mathematical foundation and
applications of polynomial diffusions in finance are provided in [9].

Definition 1. Consider the stochastic differential equation

dXt = b(Xt)dt +σ(Xt)dWt , (12)

where Wt is a d-dimensional standard Brownian motion and map σ : Rd → Rd×d is
continuous. Define a := σσ>. For maps a : Rd → Sd and b : Rd → Rd , suppose we
have ai j ∈ Pol2 and bi ∈ Pol1. Sd is the set of all real symmetric d×d matrices and
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Poln is the set of all polynomials of degree at most n. Then the solution of (12) is a
polynomial diffusion.

Moreover, we define the generator G associated with the polynomial diffusion Xt
as

G f (x) =
1
2

Tr
(
a(x)∇2 f (x)

)
+b(x)>∇ f (x) (13)

for x ∈Rd and any C2 function f . Let N =C(d+n,n) be the dimension of Poln, and
H : Rd → RN be a function whose components form a basis of Poln. Then for any
p ∈ Poln, there exists a unique vector ~p ∈ RN such that

p(x) = H(x)>~p (14)

and ~p is the coordinate representation of p(x). Moreover, there exists a unique ma-
trix representation G ∈ RN×N of the generator G , such that G~p is the coordinate
vector of G p. So we have

G p(x) = H(x)>G~p. (15)

Theorem 1. Let p(x)∈Poln be a polynomial with coordinate representation ~p∈RN

satisfying (14), G∈RN×N be a matrix representation of generator G satisfying (15),
and Xt ∈ Rd satisfy (12). Then for 0≤ t ≤ T , we have

E [p(XT )|Ft ] = H(Xt)
>e(T−t)G~p,

where Ft represents all information available until time t.

Proof. The proof is given in [9]. ut

Next, we apply this theorem to the two-factor model. Assume the spot price St is
modelled as

St = pn(xt), (16)

where xt = (χt ,ξt)
> is a vector of state variables and pn(·) is a polynomial function

with a degree at most n. χt and ξt are the short-term and long-term factors defined in
(3) and (4) for real processes and (5) and (6) for risk-neutral processes. Obviously,
xt satisfies the stochastic differential equation (12), with

b(xt) =

[
−κχt −λχ

µξ − γξt −λξ

]
,σ(xt) =

[
σχ 0
0 σξ

]
,a(xt) = σ(xt)σ(xt)

> =

[
σ2

χ 0
0 σ2

ξ

]
.

For any basis Hn(xt), the polynomial pn(xt) can be uniquely represented as

pn(xt) = Hn(xt)
>~p.

The generator G is given by

G f (x) =
1
2

Tr
([

σ2
χ 0

0 σ2
ξ

]
∇

2 f (x)
)
+

[
−κχt −λχ

µξ − γξt −λξ

]>
∇ f (x).
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By applying G to each element of Hn(xt), we get the matrix representation G. Then,
by Theorem 1, the futures price Ft,T is given by

Ft,T = E∗(ST |Ft) = H(xt)
>e(T−t)G~p. (17)

Therefore, we have the non-linear state-space model

xt = c+Ext−1 +wt ,wt ∼ N(0,Σw), (18)

and
yt = Hn(xt)

>e(T−t)G~p+ vt ,vt ∼ N(0,Σv). (19)

In this paper, we consider a polynomial with degree 2,

St = α1 +α2χt +α3ξt +α4χ
2
t +α5χtξt +α6ξ

2
t .

The basis of Pol2 is
H(xt) = (1,χt ,ξt ,χ

2
t ,χtξt ,ξ

2
t )
>,

which has a dimension N = 6. The polynomial St can be uniquely represented as

St = H(xt)
>~p,

where the coordinate representation ~p is given by

~p = (α1,α2,α3,α4,α5,α6)
> .

Then, applying G to each element of H(xt), we get

G =



0 −λχ µξ −λξ σ2
χ 0 σ2

ξ

0 −κ 0 −2λχ µξ −λξ 0
0 0 −γ 0 −λχ 2µξ −2λξ

0 0 0 −2κ 0 0
0 0 0 0 −κ− γ 0
0 0 0 0 0 −2γ

 .

4 Non-Linear Filtering Algorithm

Kalman Filter (KF) is the most popular filtering method for estimating the state vec-
tor xt = (χt ,ξt)

> based on a filtration Ft . Moreover, the unknown parameters can be
estimated jointly by maximising the log-likelihood function which is calculated us-
ing the KF. However, the KF can only deal with linear Gaussian state-space models.
For dealing with the non-linearity of the polynomial diffusion model, we introduce
two extensions of KF, the Extended Kalman Filter (EKF) and Unscented Kalman
Filter (UKF).

In this paper, we use the notation
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at|t−1 := E(xt |Ft−1), Pt|t−1 :=Cov(xt |Ft−1),

at := E(xt |Ft), Pt :=Cov(xt |Ft)

to represent the expected values and covariance matrices.
The first non-linear filtering method is EKF. In order to capture the non-linear

dynamics in the polynomial diffusion model, EKF linearises the state and measure-
ment equations. Consider the following non-linear dynamic system:

xt = f (xt−1)+wt ,wt ∼ N(0,Σw), (20)

yt = h(xt)+ vt ,vt ∼ N(0,Σv). (21)

where f (·) and h(·) are non-linear functions; xt is the unobservable state vector;
yt is the observation. The main idea of EKF is to linearise the functions f (·) and
h(·) by the first-order Taylor series. Let J f and Jh be the Jacobian of f (·) and h(·)
respectively.

Given the prior mean and a new observation at current time t, we calculate the
posterior mean at|t−1 and prediction error et as

at|t−1 = f (at−1), (22)

et = yt −h(at|t−1). (23)

However, because of the non-linearity in the state and measurement equations, we
cannot get a closed-form of the posterior covariance Pt|t−1 and the covariance of
prediction error Lt . In that case, we approximate f (·) and h(·) by first-order Taylor
expansion at point at−1 and at|t−1 respectively:

f (xt−1) = f (at−1)+ J f (at−1)(xt−1−at−1), (24)

h(xt) = h(at|t−1)+ Jh(at|t−1)(xt −at|t−1). (25)

Therefore, Pt|t−1 and Lt are calculated as:

Pt|t−1 = J f (at−1)Pt−1J>f (at−1)+Σw, (26)

Lt = Jh(at|t−1)Pt|t−1J>h (at|t−1)+Σv. (27)

Finally, we update the prior mean and covariance at current time t as:

at = at|t−1 +Ktet , (28)

Pt =
(
I−KtJh(at|t−1)

)
Pt|t−1, (29)

where Kt = Pt|t−1J>h (at|t−1)L
−1
t is the Kalman gain matrix.

In the EKF, the state distribution is propagated by linearising the non-linear sys-
tem using the first-order approximation. However, this linearisation process can in-
troduce significant errors in the true state distribution, especially when the system



10 Peilun He, Nino Kordzakhia, Gareth W. Peters, Pavel V. Shevchenko

exhibits a strong non-linearity. Additionally, obtaining an analytical Jacobian for
complicated state and measurement equations may be impractical. To address these
issues, we introduce a derivative-free filtering method called the Unscented Kalman
Filter (UKF). Instead of linearising the system, the UKF employs a set of carefully
selected points, known as sigma points, to represent the true distributions of the
state variables. These sigma points are then propagated through the state equation.
The true prior and posterior means, and covariance would be captured by the sigma
points.

At previous time t−1, the sigma points are defined as

Xt−1 =
[
at−1,at−1±

√
(nx +λ )Pt−1

]
, (30)

where nx is the number of state variables. In this paper, we set the scaling parameter
λ = 0. A detailed description is available in [19].

Next, these sigma points are propagated through the non-linear state and mea-
surement equations:

Xt|t−1 = f (Xt−1), (31)

Yt|t−1 = h(Xt|t−1). (32)

The posterior mean at|t−1, one-step forecast ŷt|t−1 and covariances are weighted
sample mean / covariance of sigma points. The remaining steps in the UKF are
similar to those in the EKF.

5 Results

In this section, we present the outcomes of our numerical experiments. In Sect. 5.1,
we compare seven distinct numerical methods for the evaluation of a matrix expo-
nential. Evaluating the matrix exponential of the matrix G is necessary for obtaining
a closed-form of futures prices according to Theorem 1. With the increase in the
degree of the polynomial, the dimension of G grows exponentially. In Sect. 5.2,
we assess the performance of the polynomial diffusion model through a simulation
study.

5.1 Matrix Exponential

Theorem 1 gives a direct way of deriving the futures price with the spot price given
in a polynomial form. However, the computation of matrix exponential e(T−t)G is
required. As the degree of polynomial increases, the dimension of the G matrix in-
creases quickly. As a consequence, one must carefully choose the numerical meth-
ods to compute the matrix exponential. A discussion of different methods to com-



Multi-Factor Polynomial Diffusion Models 11

pute matrix exponential is given in [14]. We compare different methods to compute
eA in the following three aspects:

Stability: If small changes in matrix A cause large changes in eA. It is evaluated by

φ =
||eA+E − eA||
||eA||

,

where || · || represents 2-norm and E is a matrix whose norm is small.

Accuracy: The difference between an approximation and the true value. As we
know the vector of eigenvalues Λ and the matrix of corresponding eigenvectors V
(as shown in the steps of generating matrix), the true value is calculated as eA =
VeΛV−1. Let B = {bi j} be the matrix exponential calculated by one method and
C = {ci j} be the true value of the matrix exponential, then the accuracy is evaluated
as

ψ =
n

∑
i=1

n

∑
j=1

(bi j− ci j)
2.

Efficiency: The computing time required for this methods.

Seven different methods are tested on 100 realisations of 10×10 random matri-
ces. The matrix is generated by the following steps (where the dimension n = 10):

1. Generate a n-dimensional vector of eigenvalues Λ = (λ1, ...,λn), where λi ∼
N(0,102).

2. Generate a diagonal matrix V , with diagonal elements Λ .
3. Generate a n× n matrix U = {ui j}, where ui j ∼ N(0,1). Then, divide each col-

umn of U by its L2 norm. Therefore, each column of U forms an eigenvector.
4. Calculate A =U ∗V ∗U−1.

Table 1 Stability, accuracy and efficiency of the listed methods.

Methods Stability Accuracy Efficency

Taylor series 1.7184 10.0214 0.1038
Pade approximation 1.7182 7.1447e+22 0.2415
Scaling and squaring 1.7183 4.3527 0.0657

Lagrange 1.7183 0.5412 0.1030
Newton 1.7183 0.0938 0.2098

Vandermonde 1.7183 4.0583e+10 0.1153
Eigen-decomposition 1.7183 0.0094 0.0340

The mean stability, mean accuracy and efficiency (in second) of seven meth-
ods are given in Table 1. All methods have similar stability. Eigen-decomposition
method has the best accuracy which is only 0.0094. The Eigen-decomposition and
Scaling and Squaring methods have the fastest computing time in ascending order.
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In conclusion, eigen-decomposition approximates the matrix exponential accurately
and efficiently, and it is used in the following section to compute the matrix expo-
nential.

5.2 Simulation Study

In this section, we assess the performance of the polynomial diffusion model in
terms of futures estimation and parameter estimation. To evaluate the model, we
conducted a simulation study on two datasets. The first data has 1000 observations
and 13 contracts, with maturity time from T1 = 1 month for the first available con-
tract to T13 = 13 months for the last available contract. The second data also has
1000 observations but contains 20 contracts with maturity times up to 20 months.
The time series of two data are given in Fig. 1 and Fig. 2, and the term structures
are given in Fig. 3 and Fig. 4.

Fig. 1 The time series plots of 13 simulated futures contract prices with the maturity times T1 = 1
month, T2 = 2 months, . . . , T13 = 13 months respectively.

Our target is to show that there exist some identification problems between model
parameters and coordinate representation of spot price, but this would not affect
the contract estimations. To achieve this, we first separate all parameters into two
sets: model parameters θ = (κ,γ,µξ ,σχ ,σξ ,ρ,λχ ,λξ ,σ1,σ2, . . . ,σ20), which in-
cludes all state parameters and measurement errors, and coordinate representation
~p = (α1,α2,α3,α4,α5,α6). Then, the polynomial diffusion model performances
were evaluated through root mean square error (RMSE) in the following 4 cases:

Case 1. All model parameters and coordinate representations are known. Only the
futures contracts and state variables are estimated.
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Fig. 2 The time series plots of 20 simulated futures contract prices with the maturity times T1 = 1
month, T2 = 2 months, . . . , T20 = 20 months respectively.

Fig. 3 Term structure plot of 13 futures contracts prices versus their maturities.

Case 2. Model parameters are fixed to the true values.

Case 3. Coordinate representations are fixed to the true values.

Case 4. All model parameters and coordinate representations are estimated.

The RMSE for each contract is presented in Table 2 and Table 4 for the case
of EKF and UKF algorithms respectively, based on 13-contract data. Additionally,



14 Peilun He, Nino Kordzakhia, Gareth W. Peters, Pavel V. Shevchenko

Table 2 Root mean square errors (RMSEs) for futures contracts in the case of EKF: comparison
of 13-contract data.

Contracts Case 1 Case 2 Case 3 Case 4

Contract 1 0.1200 0.1199 0.1182 0.1173
Contract 2 0.1130 0.1129 0.1130 0.1150
Contract 3 0.1079 0.1078 0.1084 0.1075
Contract 4 0.0946 0.0946 0.0938 0.0910
Contract 5 0.0893 0.0892 0.0895 0.0872
Contract 6 0.0780 0.0779 0.0777 0.0769
Contract 7 0.0704 0.0704 0.0706 0.0706
Contract 8 0.0620 0.0620 0.0622 0.0621
Contract 9 0.0506 0.0506 0.0506 0.0506
Contract 10 0.0404 0.0404 0.0404 0.0412
Contract 11 0.0305 0.0305 0.0304 0.0317
Contract 12 0.0205 0.0205 0.0206 0.0239
Contract 13 0.0100 0.0100 0.0098 0.0066
Mean 0.0683 0.0682 0.0681 0.0678

Table 3 Root mean square errors (RMSEs) for futures contracts in the case of EKF: comparison
of 20-contract data.

Contracts Case 1 Case 2 Case 3 Case 4

Contract 1 0.1873 0.1873 0.1858 0.1939
Contract 2 0.1802 0.1801 0.1803 0.1864
Contract 3 0.1783 0.1783 0.1792 0.1827
Contract 4 0.1603 0.1604 0.1593 0.1585
Contract 5 0.1577 0.1578 0.1580 0.1600
Contract 6 0.1456 0.1456 0.1453 0.1459
Contract 7 0.1394 0.1394 0.1395 0.1410
Contract 8 0.1329 0.1329 0.1334 0.1346
Contract 9 0.1200 0.1199 0.1201 0.1217
Contract 10 0.1091 0.1091 0.1092 0.1099
Contract 11 0.0983 0.0984 0.0983 0.1007
Contract 12 0.0910 0.0910 0.0913 0.0925
Contract 13 0.0817 0.0817 0.0819 0.0832
Contract 14 0.0700 0.0699 0.0699 0.0720
Contract 15 0.0569 0.0569 0.0567 0.0579
Contract 16 0.0489 0.0489 0.0488 0.0503
Contract 17 0.0381 0.0381 0.0382 0.0391
Contract 18 0.0292 0.0292 0.0294 0.0309
Contract 19 0.0192 0.0192 0.0197 0.0206
Contract 20 0.0077 0.0077 0.0074 0.0112
Mean 0.1026 0.1026 0.1026 0.1047
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Table 4 Root mean square errors (RMSEs) for futures contracts in the case of UKF: comparison
of 13-contract data.

Contracts Case 1 Case 2 Case 3 Case 4

Contract 1 0.1190 0.1219 0.1173 0.1173
Contract 2 0.1131 0.1155 0.1132 0.1132
Contract 3 0.1077 0.1097 0.1082 0.1082
Contract 4 0.0938 0.0950 0.0930 0.0930
Contract 5 0.0887 0.0898 0.0889 0.0889
Contract 6 0.0773 0.0778 0.0771 0.0771
Contract 7 0.0703 0.0711 0.0704 0.0705
Contract 8 0.0619 0.0628 0.0621 0.0621
Contract 9 0.0500 0.0506 0.0500 0.0500
Contract 10 0.0400 0.0406 0.0399 0.0400
Contract 11 0.0300 0.0311 0.0299 0.0300
Contract 12 0.0200 0.0211 0.0201 0.0202
Contract 13 0.0089 0.0111 0.0087 0.0087
Mean 0.0677 0.0691 0.0676 0.0676

Table 5 Root mean square errors (RMSEs) for futures contracts in the case of UKF: comparison
of 20-contract data.

Contracts Case 1 Case 2 Case 3 Case 4

Contract 1 0.2375 0.2133 0.1868 0.1886
Contract 2 0.2217 0.2085 0.1809 0.1820
Contract 3 0.2252 0.1952 0.1820 0.1839
Contract 4 0.1979 0.1804 0.1595 0.1607
Contract 5 0.2024 0.1687 0.1614 0.1633
Contract 6 0.1781 0.1631 0.1456 0.1466
Contract 7 0.1734 0.1531 0.1414 0.1425
Contract 8 0.1706 0.1426 0.1369 0.1384
Contract 9 0.1539 0.1306 0.1225 0.1237
Contract 10 0.1448 0.1179 0.1126 0.1139
Contract 11 0.1319 0.1081 0.1014 0.1026
Contract 12 0.1281 0.0975 0.0963 0.0977
Contract 13 0.1138 0.0899 0.0853 0.0864
Contract 14 0.1030 0.0788 0.0739 0.0750
Contract 15 0.0911 0.0657 0.0609 0.0621
Contract 16 0.0827 0.0584 0.0532 0.0544
Contract 17 0.0774 0.0461 0.0454 0.0467
Contract 18 0.0704 0.0373 0.0378 0.0392
Contract 19 0.0624 0.0303 0.0294 0.0308
Contract 20 0.0574 0.0223 0.0228 0.0244
Mean 0.1412 0.1154 0.1068 0.1081
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Fig. 4 Term structure plot of 20 futures contracts prices versus their maturities.

Table 3 and Table 5 display the RMSE for the 20-contract data. It is easy to see that
the RMSE values are similar across all four cases, regardless of the contract consid-
ered. This indicates that all futures contracts are estimated accurately. Furthermore,
by assigning a larger measurement error to the short-term contract and a smaller
measurement error to the long-term contract, the RMSE values decrease as the ma-
turity time increases. Moreover, there is minimal difference in contract estimation
when using either the EKF or UKF. The performance of both algorithms in terms of
contract estimation is comparable, demonstrating their effectiveness in the context
of this study.

Table 6 Estimated state parameters for the 13-contract data for Case 3 and Case 4. For Case 1 and
Case 2 the state parameters are fixed to the true values.

True Case 3 - EKF Case 4 - EKF Case 3 - UKF Case 4 - UKF

κ 0.5 0.5166 0.9540 0.5169 0.5198
γ 0.3 0.3151 0.4311 0.3153 0.3200
µξ 1 1.8929 -0.1651 1.8745 2.3371
σχ 1.5 1.4166 7.0949 1.4172 5.1781
σξ 1.3 1.4068 5.6780 1.4054 1.3884
ρ -0.3 -0.3025 -0.2937 -0.3019 -0.2896
λχ 0.5 0.8498 7.8781 0.8537 2.0501
λξ 0.3 0.8423 4.5633 0.8195 1.2683
χ0 0 -1.6138 3.5164 0.1731 -4.2461
ξ0 3.33 5.0634 -9.3820 5.0790 3.6159
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Table 7 Estimated state parameters for the 20-contract data for Case 3 and Case 4. For Case 1 and
Case 2 the state parameters are fixed to the true values.

True Case 3 - EKF Case 4 - EKF Case 3 - UKF Case 4 - UKF

κ 0.5 0.5115 0.4629 0.5122 0.5121
γ 0.3 0.3083 0.4101 0.3092 0.3072
µξ 1 1.7924 -0.8217 1.8131 2.5670
σχ 1.5 1.4506 1.3957 1.4482 1.6945
σξ 1.3 1.3273 1.3459 1.3307 1.1172
ρ -0.3 -0.3046 0.3317 -0.3037 -0.2987
λχ 0.5 0.7988 -0.7015 0.8082 1.0558
λξ 0.3 0.7986 -1.8602 0.8081 0.8872
χ0 0 0.7635 2.0328 0.9607 -2.9934
ξ0 3.33 3.0004 2.0159 3.9452 6.5649

Table 8 Estimated measurement errors for the 13-contract data for Case 3 and Case 4. For Case 1
and Case 2 the measurement errors are fixed to the true values.

True Case 3 - EKF Case 4 - EKF Case 3 - UKF Case 4 - UKF

σ1 0.13 0.1255 0.1302 0.1255 0.1255
σ2 0.12 0.1207 0.1220 0.1207 0.1207
σ3 0.11 0.1133 0.1135 0.1133 0.1133
σ4 0.10 0.0966 0.0952 0.0967 0.0966
σ5 0.09 0.0925 0.0904 0.0925 0.0925
σ6 0.08 0.0790 0.0783 0.0790 0.0790
σ7 0.07 0.0721 0.0719 0.0721 0.0721
σ8 0.06 0.0630 0.0635 0.0630 0.0630
σ9 0.05 0.0507 0.0515 0.0507 0.0507
σ10 0.04 0.0404 0.0411 0.0404 0.0404
σ11 0.03 0.0298 0.0313 0.0298 0.0298
σ12 0.02 0.0207 0.0227 0.0207 0.0207
σ13 0.01 0.0100 1.03E-05 0.0100 0.0100

However, when we look at the parameter estimations, the conclusion changes.
Table 6 - Table 11 give the estimated state parameters, measurement errors and
coordinate representations, respectively. For the state parameters, the estimations
in Case 4 (coordinate representations are estimated) change a lot compared to the
estimations in Case 3 (coordinate representations are fixed), which suggests the ex-
istence of parameter identification problems. The trends of state variables are some-
how captured by the coordinate representations. Moreover, the estimations in Case
3 are closer to the true values.

For the measurement errors (Table 8 and Table 9), there are not many differences
between Case 3 and Case 4. Measurement errors are estimated accurately. There are
also not many differences between EKF and UKF.

The estimated coordinate representations are given in Table 10 and Table 11.
Comparing Case 2 (state parameters and measurement errors are fixed) to Case 4
(state parameters and measurement errors are estimated), like state parameters, the
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Table 9 Estimated measurement errors for the 20-contract data for Case 3 and Case 4. For Case 1
and Case 2 the measurement errors are fixed to the true values.

True Case 3 - EKF Case 4 - EKF Case 3 - UKF Case 4 - UKF

σ1 0.20 0.1953 0.2015 0.1953 0.1953
σ2 0.19 0.1902 0.1962 0.1903 0.1903
σ3 0.18 0.1869 0.1888 0.1869 0.1869
σ4 0.17 0.1646 0.1647 0.1646 0.1646
σ5 0.16 0.1636 0.1636 0.1636 0.1636
σ6 0.15 0.1487 0.1486 0.1486 0.1486
σ7 0.14 0.1433 0.1434 0.1433 0.1433
σ8 0.13 0.1366 0.1365 0.1366 0.1366
σ9 0.12 0.1225 0.1233 0.1225 0.1225
σ10 0.11 0.1109 0.1112 0.1109 0.1109
σ11 0.10 0.0995 0.1002 0.0995 0.0995
σ12 0.09 0.0924 0.0926 0.0925 0.0925
σ13 0.08 0.0826 0.0834 0.0826 0.0826
σ14 0.07 0.0706 0.0708 0.0706 0.0706
σ15 0.06 0.0570 0.0574 0.0570 0.0570
σ16 0.05 0.0493 0.0498 0.0493 0.0493
σ17 0.04 0.0387 0.0389 0.0388 0.0387
σ18 0.03 0.0294 0.0294 0.0294 0.0294
σ19 0.02 0.0208 0.0204 0.0208 0.0208
σ20 0.01 0.0093 0.0113 0.0093 0.0093

Table 10 Estimated coordinate representations for the 13-contract data for Case 2 and Case 4. For
Case 1 and Case 3 the coordinate representations are fixed to the true values.

True Case 2 - EKF Case 4 - EKF Case 2 - UKF Case 4 - UKF

α1 5 4.5149 -3.8661 10 3.8891
α2 2 1.8340 -2.2637 8.5185 -0.2656
α3 2 2.3138 -9.9986 -2.2797 0.3508
α4 2 1.9874 0.0163 1.8713 0.1451
α5 3 3.0488 0.0470 -3.6190 0.8563
α6 1 0.9661 -0.7228 0.5497 1.0349

Table 11 Estimated coordinate representations for the 20-contract data for Case 2 and Case 4. For
Case 1 and Case 3 the coordinate representations are fixed to the true values.

True Case 2 - EKF Case 4 - EKF Case 2 - UKF Case 4 - UKF

α1 5 5.3698 8.0156 6.7448 8.9205
α2 2 2.5473 -4.2205 8.5185 -5.7008
α3 2 1.9943 6.7163 -2.2797 -4.9896
α4 2 2.0308 2.1835 1.8713 1.4698
α5 3 2.8492 2.1582 -3.6190 2.9955
α6 1 0.9686 -2.3905 0.5497 1.4239
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estimations of coordinate representations change a lot. Moreover, in Case 2, the es-
timations of coordinate representations filtered by EKF are close to the true values,
but not the estimations filtered by UKF are not. In that case, coordinate representa-
tions can be estimated through EKF. In Case 4, both EKF and UKF cannot estimate
coordinate representations.

6 Conclusion

In the modelling of commodity futures, it is common to assume that the logarithm
of the underlying spot price is expressed as a sum of various factors. However, this
class of models is subject to two limitations. Firstly, for deriving a closed-form ex-
pression for the futures price, the spot price used to be a linear function of Gaussian
distributed factors. Secondly, these models imply that the spot price always be pos-
itive. To overcome these two limitations, we introduced the polynomial diffusion
model in this paper, which serves as a generalisation of the Schwartz-Smith two-
factor model. This model allows for a more flexible and non-linear representation of
the spot price. Specifically, we applied a polynomial diffusion model of degree 2 to
the two-factor model. The estimation of parameters and hidden state variables was
performed using the EKF and the UKF.

We conducted a study to assess the performance of the models in four differ-
ent cases using the simulated data. Overall, we found that the futures contracts can
be accurately estimated. However, parameter estimation remains challenging, even
when we impose constrains on the model parameters and estimate coordinate repre-
sentations of the polynomial of spot price. In other words, while the state variables
χt and ξt can not be estimated correctly, however the futures prices were recovered
reasonably well. This phenomenon suggests the existence of identification prob-
lems. Firstly, the trends of state variables are captured by the spot price polynomials.
As a consequence, the estimates of both state parameters and coordinate represen-
tations of the polynomial are far away from the true values. Secondly, even when
we fix one set of parameters (either the model parameters or coordinate representa-
tions), the estimation of the other set of parameters still fails to converge to the true
values. The identification issue poses the challenge of finding the correct order for
the polynomial diffusion process. Further research on the parameter identification
problem is needed to address this issue.
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