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Abstract In this study, we consider the extended two-factor model, originally in-
troduced by Schwartz and Smith (2000), which has been commonly used for the
pricing of commodity derivatives. In this model setup, we assume the latent short
and long-term factors represent correlated mean-reverting processes. We develop
a Kalman filter for jointly estimating the state variables and unknown parameters.
In the measurement equation system, we assume that the residuals are serially cor-
related and inter-dependent. We derive the Kalman filter under the assumption that
these residuals are AR(p) processes. Then the Kalman filter is used for obtaining the
marginalised likelihood estimators for the state variables and the model parameters.
We provide an extensive, reproducible simulation study for examining the conver-
gence of the estimators in our proposed model. The MATLAB code for this study is
available via the link to GitHub1.

1 Introduction

Commodity markets are a crucial part of the global economy, as they enable market
participants and industries to manage price risk and ensure efficient allocation of
available resources. Challenges arise in the pricing of commodity derivatives due
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to the complex nature of the market, including supply and demand fluctuations,
geopolitical risks, and climate risks. Over the years various pricing models have
been developed for capturing the complexities of the market dynamics.

The factor models provided a convenient framework for pricing derivatives writ-
ten on commodities with unobservable spot prices. Study in [4] proposed a reduced
form model, a single factor model that models the spot price of a commodity using
the geometric Brownian motion, with the convenience yield being a determinis-
tic function of the commodity price and a constant interest rate. The model was
extended in [10] and [14], allowing stochasticity in the convenience yield and in-
corporating volatilities of historical returns on futures contracts of different matu-
rities. Comparative analysis was conducted in [25], assessing reduced-form models
that are comprised of one to three factors, starting from the spot price following a
mean-reverting process, and subsequently adding stochastic convenience yields and
interest rates.

The Schwartz-Smith two-factor model was introduced in [24] and since then is
widely used in the pricing of commodities. In fact, the authors acknowledged that
their approach is formally equivalent to their pioneering pricing framework in [14],
where the stochastic yield factor was considered. The spot price of a commodity in
[24] is decomposed into two distinct unobservable factors, representing short-term
deviations and a long-term equilibrium price level. The short-term factor is assumed
to converge to zero over time, reflecting the temporary effects of fluctuations in sup-
ply, demand, and market conditions. Although the long-term factor was originally
assumed to follow a Brownian motion with drift, often it is also assumed to follow
a mean-reverting process, see [8] and the references therein.

In this paper, we will study the joint estimation problem of the two latent vari-
ables, as well as model parameters, by establishing the likelihood estimation pro-
cedure using the Kalman filter in the extended setting. In previous works the two
variants of Schwartz-Smith (2000) model have been calibrated to various futures
markets such as the copper market (see [15], [23]), the crude oil market (see [7],
[3], [8]), and also the carbon emission allowance market (see [1], [16]).

As supply and demand for certain commodities are influenced by the time of the
year, the deterministic functions representing seasonal components were introduced
in the model framework. Some common functions include a step function to model
seasonal effects for different calendar months, and the sum of sinusoids (see studies
in [18], [21], [27] ). Stochastic jumps were incorporated in a short-term factor in [29]
and [26] for modelling sudden changes in the market in the data-driven setting. The
generalisation of the Schwartz-Smith Two-Factor model has been designed in [18]
and [9], allowing for more than two factors that follow joint mean-reverting pro-
cesses as well as introducing time-varying economic factors in the pricing model.
Study in [6] developed a pricing model for long-dated commodity derivatives, al-
lowing for both stochastic volatilities and interest rates to be correlated. In [30].
In this study, the risk premium followed a stochastic process, and its performance
was empirically analysed using the European Union Allowance futures (EUA) and
options prices.
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The joint estimation of state variables and model parameters has several limita-
tions. The study in [13] pointed out the identifiability problem due to the invertibility
issue of the observed Fisher information matrix of model parameters. An additional
constraint was proposed in [3] for rectifying the parameter identification problem
within the maximum likelihood estimation procedure using Kalman filter approach.
The filtering process itself was also limited to a set of standard assumptions on mea-
surement errors, e.g. Gaussian white noise. The study in [17] relaxed the assumption
of independence of the state and measurement error processes, and allowed the mea-
surement errors to follow a GARCH(1,1) process to incorporate the heteroscedastic
feature of commodity spot prices. For relaxing the assumption of independence be-
tween different futures contracts, [27] has taken an approach of estimating covari-
ances, by defining each element as a parametrised function of time-to-maturity, but
no substantial improvement was made in parameter estimation. The study in [11]
has demonstrated through numerical simulation, that augmentation methods do not
work well for the estimation of the covariance matrix of measurement errors. In
[12], the effects on parameter estimation were studied in the framework when the
option prices were used instead of futures prices; the extended Kalman filter was de-
ployed for the estimation of state variables in a nonlinear system. Other than finan-
cial application, estimation of dependence component-wise is of high importance
in geoscience, and the ensemble Kalman filter is usually adopted for developing
various methods of estimation of the covariance matrix of measurement errors, (see
[20], [28]).

In [25], the correlations of log prices of commodity contracts were modelled
through the correlated bivariate latent state variables. The empirical studies have
shown that often the observed measurement equation residuals exhibit significant
correlations, necessitating a closer investigation of their sources. In a recent study,
[16] proposed a two-step approach to joint estimation of model parameters and inter-
correlations of the errors in measurement equations for the contracts with different
maturities. For the incorporation of inter-correlated measurement errors and AR(1)
serial correlation in each error series, a two-step approach was used, first estimat-
ing the model parameters via maximising the marginalised likelihood process and
subsequently fitting an autoregressive model to the model residuals.

In difference from [16], here we propose a unified estimation procedure for the
estimation of serially correlated series in the form of AR(p) of any order p ≥ 1.
The derivation of Kalman filter for AR(1) measurement errors can be found in [5]
and [22]. The method suggested in this paper, can be used for improving out-of-
sample commodity price forecasts over the method with any other reduced form of
the setting of the measurement equations. In this paper, using a simulation study,
we illustrate the convergence of the estimates of parameters in the Schwartz-Smith
two-factor model by taking different numbers of contracts and sample sizes.

This paper is outlined as follows. In Section 2, we formulate the main model
with a measurement equations system accommodating inter-dependent and serially
correlated error terms. Under these assumptions on the error processes, we derive the
Kalman filter. In Section 3, we present the results of the simulation study illustrating
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the convergence of the estimates to true values of model parameters for different
practical scenarios. Section 4 concludes with a brief discussion of the results.

2 The Model

Consider the risk-neutral probability space denoted by (Ω ,I,Q). We define the risk-
neutral dynamics of the spot price St as lnSt = χt + ξt , where χt and ξt are latent
variables that are short-term and long-term factors, respectively, given through fol-
lowing stochastic differential equations

dχt = (−κχt −λχ)dt +σχ dW χ

t , (1)

dξt = (µξ −λξ − γξt)dt +σξ dW ξ

t , (2)

EQ[dW χ

t dW ξ

t ] = ρχξ dt, (3)

where κ,γ ∈ R+ are the rate of the mean-reversion for χt and ξt , respectively, λχ ,
λξ ∈ R are deterministic unknown risk premia, σχ , σξ ∈ R+ are the volatility pa-

rameters, and µξ ∈ R is the mean of the long-term factor. W χ

t , W ξ

t are correlated
standard Brownian processes under Q, where ρχξ is the correlation coefficient of the
two processes. The futures price at time t, maturing in T years, is Ft,T = E[ST |It ].

In discrete time, we consider the following linear state space model

xt = c+Gxt−1 +wt , wt ∼N (0,W), (4)
yt = dt +Btxt +vt , (5)
vt = Φp(L)vt + ε t , ε t ∼N (0,Vε), (6)

where, for t = 1,2, · · · ,n, xt and yt are the vectors of latent and observable vari-
ables, respectively. Further, we assume that N futures contracts have the maturities
T1, · · · ,TN , where T1 < T2 < · · ·< TN , and

xt =

(
χt
ξt

)
, c =

(
0

µξ (1−e−γ∆ t )

γ

)
, G =

(
e−κ∆ t 0

0 e−γ∆ t

)
, (7)

yt = (lnFt,T1 , lnFt,T2 , · · · , lnFt,TN )
′ , (8)

dt = (A(T1− t),A(T2− t), · · · ,A(TN− t))′ , (9)

Bt =

(
e−κ(T1−t) · · · e−κ(TN−t)

e−γ(T1−t) · · · e−γ(TN−t)

)′
, (10)

with Φp(L) = ∑
p
r=1 φ rL

r being a function of the lag operator, ∆ t is the time dif-
ference in years between discretised time instances t − 1 and t, and the function
A(T − t) is defined as
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A(T − t) =−
λχ

κ

(
1− e−κ(T−t)

)
+

µξ −λξ

γ

(
1− e−γ(T−t)

)
+

1
2

(
1− e−2κ(T−t)

2κ
σ

2
χ +

2(1− e−(κ+γ)(T−t))

κ + γ
σχ σξ ρχξ +

1− e−2γ(T−t)

2γ
σ

2
ξ

)
.

(11)

The covariance matrices of error terms wt and ε t are defined as

W =

(
1−e−2κ∆ t

2κ
σ2

χ
1−e−(κ+γ)∆ t

κ+γ
σχ σξ ρχξ

1−e−(κ+γ)∆ t

κ+γ
σχ σξ ρχξ

1−e−2γ∆ t

2γ
σ2

ξ

)
, Vε =


s2

11 s12 · · · s1N
s12 s2

22 · · · s2N
...

...
. . .

...
s1N s2N · · · s2

NN

 .

(12)
Applying the lag polynomial I−Φp(L) to (5), where I is the identity matrix, the

measurement equation is expressed as

yt = d∗t (p)+B∗t (p)xt +v∗t (p), (13)

where

d∗t (p) =
p

∑
r=1

φ ryt−r +dt −
p

∑
r=1

φ rdt−r +
p

∑
r=1

φ rBt−r

[
r

∑
k=1

(G−1)k

]
c, (14)

B∗t (p) = Bt −
p

∑
r=1

φ rBt−r(G−1)r, (15)

v∗t (p) =
p

∑
r=1

φ rBt−r

[
r

∑
k=1

(G−1)r−k+1wt−k+1

]
+ ε t . (16)
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Proof. We wish to prove that (14) - (16) are true for forming the measurement equa-
tion (13) when measurement errors marginally follow AR(p) processes. For p = 1,
we consider the following linear state-space model

xt = c+Gxt−1 +wt , wt ∼N (0,W), (17)
yt = dt +Btxt +vt , (18)
vt = φvt−1 + ε t , ε t ∼N (0,Vε). (19)

Let Φ(L) = φ 1L. By applying I−φ 1L to equation (18), and using equation (17), we
obtain

(I−Φ(L))yt = (I−Φ(L))dt +(I−Φ(L))Btxt +(I−Φ(L))vt ,

which can be extended to

yt = φyt−1 +dt −φ 1dt−1 +(Bt −φ 1Bt−1G−1)xt +φ 1Bt−1G−1(c+wt)+ ε t .

Hence,
yt = d∗t (1)+B∗t (1)xt +v∗t (1),

where

d∗t (1) = φ 1yt−1 +dt −φ 1dt−1 +φ 1Bt−1G−1c,

B∗t (1) = Bt −φ 1Bt−1G−1,

v∗t (1) = φ 1Bt−1G−1wt + ε t .

Therefore, (14) - (16) are obvious for p = 1. Now we assume that (13) - (16) holds
for p = m. Then for p = m+1 we obtain

yt = φ 1yt−1 + · · ·+φ myt−m +φ m+1yt−(m+1)

+dt −φ 1dt−1−·· ·−φ mdt−m−φ m+1dt−(m+1)

+Btxt −φ 1Bt−1xt−1−·· ·−φ mBt−mxt−m−φ m+1Bt−(m+1)xt−(m+1)+ ε t

= d∗t (m)+φ m+1yt−(m+1)−φ m+1dt−(m+1)+B∗t (m)xt −φ m+1Bt−(m+1)xt−(m+1)

+v∗t (m)

= d∗t (m+1)+B∗t (m+1)xt +v∗t (m+1).

Hence, (14) - (16) are proven true for all p≥ 1. ut

Given the first p observations, the prediction error for t > p is defined as

e∗t|t−1 = yt −E[yt |It−1]

= yt −d∗t (p)−B∗t (p)E[xt |It−1]−E[v∗t (p)|It−1], (20)

and we assume wt and ε t are mutually independent, and serially uncorrelated. For
p = 1, we have E[v∗t (1)|It−1] = 0, since E[wt |It−1] = 0. For p > 1,E[v∗t (p)|It−1] is
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defined as

E[v∗t (p)|It−1] =
p

∑
r=2

φ rBt−r

[
r

∑
k=2

(G−1)r−k+1E[wt−k+1|It−1]

]
,

and the conditional expectation of wt−k+1|It−1 can be estimated as

E[wt−k+1|It−1] = E[xt−k+1|It−1]− c−GE[xt−k|It−1],

with E[xt−k|It−1] that can be estimated via the Kalman smoother for k > 1. We use
the following recursive formulas to obtain estimates of smoother,

E[xt−k|It−1] = E[xt−k|It−k]+Jt−k(E[xt−k+1|It−1]−E[xt−k+1|It−k]),

Var[xt−k|It−1] =Var[xt−k|It−k]+Jt−k(Var[xt−k+1|It−1]−Var[xt−k+1|It−k])J′t−k,

Jt−k =Var[xt−k|It−k]G′Var[xt−k+1|It−k]
−1.

Let Pt|t−1 = Var[xt |It−1] be the variance of state prediction error for the next
state. The variance of the prediction error is

Var[e∗t|t−1] =Var[yt |It−1] = L∗t|t−1 =Var[B∗t (p)xt +v∗t (p)|It−1]

= B∗t (p)Pt|t−1[B∗t (p)]′+V∗t|t−1(p)

+B∗t (p)W

[
p

∑
r=1

φ rBt−r(G−1)r

]
+

[
p

∑
r=1

φ rBt−r(G−1)r

]
W′B∗t (p)

= B∗t (p)Pt|t−1[B∗t (p)]′+V∗t|t−1(p)+B∗t (p)C∗t (p)+ [C∗t (p)]′[B∗t (p)]′.
(21)

where C∗t (p) is the covariance of the two error processes wt ,v∗t (p), as wt is a func-
tion of v∗t (p), and is defined as

C∗t (p) = W

(
p

∑
r=1

φ rBt−r(G−1)r

)′
(22)

The conditional variance of v∗t (p) is

Var[v∗t (p)|It−1] = V∗t|t−1(p) =

[
p

∑
r=1

φ rBt−r(G−1)r

]
W

[
p

∑
r=1

φ rBt−r(G−1)r

]′
+Vε .

(23)
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Proof. Assuming wt ,ε t are mutually independent and serially uncorrelated, the
variance of the prediction error is

L∗t|t−1 =Var[e∗t|t−1] =Var[B∗t (p)xt +v∗t (p)|It−1]

= E[(B∗t (p)xt +v∗t (p))(B∗t (p)xt +v∗t (p))′|It−1]

−E[B∗t (p)xt +v∗t (p)|It−1]E[(B∗t (p)xt +v∗t (p))′|It−1]

= B∗t (p)Pt|t−1B∗t
′(p)+V∗t|t−1(p)+B∗t (E[xt [v∗t (p)]′|It−1]

−E[xt |It−1]E[v∗t (p)|It−1])+(E[v∗t (p)xt
′|It−1]

−E[v∗t (p)|It−1]E[xt |It−1])[B∗t (p)]′|It−1]

= B∗t (p)Pt|t−1B∗t
′(p)+V∗t|t−1(p)+B∗t (p)Cov(xt ,v∗t (p)|It−1)

+Cov(v∗t (p),x∗t
′|It−1)

′
[B∗t (p)]′,

where Pt|t−1 = Var[xt |It−1]. Since the new measurement error v∗t (p) is a function
of wt ,

C∗t (p) =Cov(xt ,v∗t (p)|It−1) =Cov(wt ,
p

∑
r=1

φ rBt−r(G−1)rwt |It−1)

= W

(
p

∑
r=1

φ rBt−r(G−1)r

)′
,

and

V∗t|t−1(p) =Var[v∗t (p)|It−1]

=Var

[
p

∑
r=1

φ rBt−r

[
r

∑
k=1

(G−1)r−k+1wt−k+1

]
+ ε t

∣∣∣∣∣It−1

]

=
p

∑
r=1

φ rBt−r

[
r

∑
k=1

(G−1)kW[(G−1)k]′

]
B′t−rφ

′
r +Vε

=

[
p

∑
r=1

φ rBt−r(G−1)r

]
W

[
p

∑
r=1

φ rBt−r(G−1)r

]′
+Vε ,

with Var[wt−k+1|It−1] = 0 for any k > 1. ut

Lastly, the optimal Kalman gain matrix K∗t is

K∗t = (Pt|t−1[B∗t (p)]′+C∗t (p))(L∗t|t−1 +B∗t (p)C∗t (p)+ [C∗t (p)]′[B∗t (p)]′)−1, (24)

which is used to correct and forecast the distribution of the state vectors for t > p.
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Proof. Defining at|t−1 = E[xt |It−1] and v∗t|t−1(p) = E[v∗t (p)|It−1],

at = E[xt |It ] = at|t−1 +K∗t e∗t|t−1

= at|t−1 +K∗t [B
∗
t (p)xt +v∗t (p)−B∗t (p)at|t−1−v∗t|t−1(p)].

and the state estimation error η t is

η t = xt −at

= xt −at|t−1−K∗t [B
∗
t (p)xt +v∗t (p)−B∗t (p)at|t−1−v∗t|t−1(p)]

= (I−K∗t B∗t (p))(xt −at|t−1)−K∗t (v
∗
t (p)−v∗t|t−1(p)).

The covariance matrix of the state estimation error will be

Pt = E[η tη t
′]

= E[((I−K∗t B∗t (p))(xt −at|t−1)(xt −at|t−1)
′(I−K∗t B∗t (p))′

− (I−K∗t B∗t (p))(xt −at|t−1)(K∗t (v
∗
t (p)−v∗t|t−1(p)))′

−K∗t (v
∗
t (p)−v∗t|t−1(p))(xt −at|t−1)

′(I−K∗t B∗t (p))′

+K∗t (v
∗
t (p)−v∗t|t−1(p))(K∗t (v

∗
t (p)−v∗t|t−1(p))′]

= Pt|t−1−K∗t B∗t (p)Pt|t−1−Pt|t−1[B∗t (p)]′K∗t
′+KtB∗t (p)Pt|t−1[B∗t (p)]′K∗t

′

− (I−K∗t B∗t (p))C∗t (p)K∗t
′−K∗t [C

∗
t (p)]′(I−K∗t B∗t (p))′+K∗t V∗t|t−1K∗t

′

= Pt|t−1−K∗t B∗t (p)Pt|t−1−Pt|t−1[B∗t (p)]′K∗t
′

+K∗t (B
∗
t (p)Pt|t−1[B∗t (p)]′+V∗t|t−1)K

∗
t
′−C∗t (p)K∗t

′+K∗t B∗t (p)C∗t (p)K∗t
′

−K∗t [C
∗
t (p)]′+K∗t [C

∗
t (p)]′[B∗t (p)]′K∗t

′.

Applying trace to the above equation, we minimise the following first derivative
in order to find the optimal Kalman gain matrix.

tr(Pt) = tr(Pt|t−1)−2tr(K∗t B∗t (p)Pt|t−1)+ tr(K∗t L∗t|t−1K∗t
′)

+ tr(K∗t B∗t (p)C∗t (p)K∗t
′)+ tr(K∗t [C

∗
t (p)]′[B∗t (p)]′K∗t

′)

−2tr(K∗t [C
∗
t (p)]′),

d(tr(Pt))

dK∗t
=−2(B∗t (p)Pt|t−1)

′+2K∗t L∗t|t−1 +2K∗t B∗t (p)C∗t (p)

+2K∗t [C
∗
t (p)]′[B∗t (p)]′−2C∗t (p) = 0.

Therefore, the optimal Kalman gain matrix K∗t is

K∗t = (Pt|t−1[B∗t (p)]′+C∗t (p))(L∗t|t−1 +B∗t (p)C∗t (p)+ [C∗t (p)]′[B∗t (p)]′)−1. ut

Now, assuming the prediction error e∗t|t−1 follows a multivariate normal distribu-
tion, we construct the marginalised likelihood based on the prediction errors
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`t(ψ,Vε ,φ ;yt) =−
1
2

ln(det(L∗t|t−1))−
1
2
(e∗t|t−1)

′(L∗t|t−1)
−1e∗t|t−1, (25)

where ψ = (κ,σχ ,λχ ,γ,µξ ,σξ ,λξ ,ρχξ ) is the set of model parameters and det(·)
denotes the determinant of the matrix. The sum of the marginalised likelihoods for
t > p is the likelihood function to be maximised for the estimation of the model
parameters. That is,

`(ψ,Vε ,φ ;yt) =−
1
2

n

∑
t=p+1

[
ln(det(L∗t|t−1))+(e∗t|t−1)

′(L∗t|t−1)
−1e∗t|t−1

]
, (26)

where, (26) is to be maximised subject to the constraint κ ≥ γ from [3]. As discussed
in [3], this constraint is used to overcome the parameter identification problem in the
state process xt . In addition, the code specifications and structure of the covariance
matrix of the measurement errors, Vε , used are similar to that provided in [16].

3 Simulation Study

In this section, we present the results of the simulation study designed to address
the convergence of the estimates of the model parameters and the state variables in
the two scenarios, where the error terms in the system of measurement equations
are inter-correlated and follow:

Model 1: AR(1) process (the two-step approach is used for estimation, [16]);
Model 2: AR(p) process (the unified procedure presented in Section 2, is used
for estimation).

In this study, the system of measurement equations is formulated for the loga-
rithms of the prices of futures contracts with varying maturity times. The samples
of the futures prices (with the number of the contracts N = 5,10) were simulated
using Model 2 scenario with p = 1. The futures contracts have maturities ranging
from 1 to 5 years. Specifically, for N = 5, we simulate annual contracts, while for
N = 10, each vector of futures contracts matures biannually. To align with real mar-
ket conditions, we took the model parameters from an empirical study on the EUA
futures prices in [1] as the true values in our simulation study. In addition, to ini-
tialise the serial and inter-correlations of the measurement errors in Model 2 we use
the results from Model 1, [16]. The long-term factor ξt is simulated assuming it
follows a Brownian motion, equivalent to setting γ = 0.

Figures 1 - 2 present visualisations illustrating the convergence of the model
parameter estimates by plotting the differences between the estimates and their true
values. The figures correspond to the cases of N = 5 and N = 10, respectively. For
N = 5, we observe that the estimates tend to exhibit fluctuations for sample sizes n≤
1000. However, they start stabilising thereafter. In most cases, Model 2 demonstrates
superior performance compared to Model 1, particularly when the sample size is
large. Although there are minimal differences between the two models, except for
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Fig. 1 Plots 1-8 show the difference of the estimated parameter to their true values in the following
order - κ,σχ ,λχ ,γ,µξ ,σξ ,λξ ,ρχξ , when N = 5. The x-axis shows the sample size in the simulated
dataset, while the y-axis shows the absolute difference. The blue line represents the result using
Model 1, and the red line shows the result using Model 2. Insets are added at n = 5,000 for better
comparison between two models.
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Fig. 2 Plots 1-8 show the difference of the estimated parameter to their true values in the following
order - κ,σχ ,λχ ,γ,µξ ,σξ ,λξ ,ρχξ , when N = 10. The x-axis shows the sample size in the simu-
lated dataset, while the y-axis shows the absolute difference. The blue line represents the result
using Model 1, and the red line shows the result using Model 2. Insets are added at n = 5,000 for
better comparison between two models.
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λ̂χ and γ̂ , Model 2 generally demonstrates better performance. Both models exhibit
similar behaviour, except for σ̂χ and ρ̂χξ , where we see a significant difference in
estimates at n = 5,000.

Table 1 Simulation Study - Parameter estimates with a full covariance matrix and AR(1) measure-
ment errors, n = 5,000, N = 10

Aspinall et al. [2] Model 1 Model 2 True

κ̂ 0.2746 0.2571 0.2319 0.2462
σ̂χ 0.1171 0.1454 0.0787 0.0748
λ̂χ -0.0327 0.0122 0.0021 0.0062
γ̂ 1.00 ×10−5 1.00 ×10−5 1.25×10−5 0
µ̂ξ 0.4956 0.5913 0.5692 0.4973
σ̂ξ 0.5212 0.5354 0.5231 0.5077
λ̂ξ -0.1748 0.5590 0.5337 0.4527
ρ̂χξ 0.2283 0.0094 0.2852 0.2960
ŝ1 1.00 ×10−10 0.0054 0.0046 0.01
ŝ2 0.0180 0.0203 0.0046 0.01
ŝ3 0.0145 0.0175 0.0047 0.01
ŝ4 0.0138 0.0176 0.0043 0.01
ŝ5 0.0148 0.0187 0.0042 0.01
ŝ6 0.0141 0.0192 0.0047 0.01
ŝ7 0.0132 0.0179 0.0047 0.01
ŝ8 0.0140 0.0197 0.0048 0.01
ŝ9 0.0136 0.0200 0.0045 0.01
ŝ10 0.0127 0.0010 0.0046 0.01
ρ̂1 - 0.9666 0.3888 0.90
ρ̂2 - 0.5298 0.2730 0.90
ρ̂3 - 0.6047 0.3858 0.90
ρ̂4 - 0.6422 0.1978 0.90
ρ̂5 - 0.6300 0.1509 0.90
ρ̂6 - 0.6983 0.3523 0.90
ρ̂7 - 0.6419 0.3267 0.90
ρ̂8 - 0.6516 0.4005 0.90
ρ̂9 - 0.6737 0.2693 0.90
ρ̂10 - 0.3210 0.7079 0.90
φ̂1,1 - 0.8929 0.9467 0.95
φ̂1,2 - 0.9526 0.9558 0.95
φ̂1,3 - 0.9401 0.9451 0.95
φ̂1,4 - 0.9408 0.9456 0.95
φ̂1,5 - 0.9495 0.9592 0.95
φ̂1,6 - 0.9485 0.9446 0.95
φ̂1,7 - 0.9392 0.9485 0.95
φ̂1,8 - 0.9494 0.9498 0.95
φ̂1,9 - 0.9501 0.9500 0.95
φ̂1,10 - 0.9187 0.9468 0.95

AIC −2.71×105 −4.01×105 −4.60×105 -
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The estimation results for model parameters, encompassing volatilities, inter-
correlations, and serial correlations, are presented in Table 1 for a sample size of
n = 5,000 and N = 10. Additionally, we present the estimates using the model in
[2] in Table 1 for testing on the available R package. This work involves a recently
published R code for the estimation of model parameters under the Schwartz-Smith
two-factor model framework, where model parameters are estimated based on the
‘Genetic Optimization Using Derivatives’ algorithm that does not require setting
the values to initiate the estimation procedure, see [19]. However, this model setup
assumes measurement errors follow white noise, and are independent component-
wise. In contrast, in [16], they use the gradient-based algorithm to minimise the
non-linear function with constraints, with the initial values determined based on the
grid search method. The result shows the model in [2] is able to closely estimate γ̂

and µ̂ξ , but other model parameters deviates from their true values.
It is important to note that in Model 1, the estimated parameters ŝ j and ρ̂ j corre-

spond to the volatilities and inter-correlation parameters of the measurement error
process vt . Conversely, in Model 2, they represent parameters related to ε t . The se-
rial correlations, denoted as φ̂ , for Model 1 are estimated by fitting an autoregressive
(AR) model to the fitted residuals. Using the Akaike Information Criterion (AIC)
Model 2 is selected over Model 1. In [2], V is assumed to be a diagonal matrix,
hence s j, j = 1, . . . ,N are to be estimated.

In addition, we evaluate the performance of state estimation for Models 1 and 2.
The quality of the fit for the state variables is assessed using the mean squared error
(MSE). Table 2 presents the MSE values for each model at various sample sizes
when N = 5,10. We observe that for smaller datasets (n≤ 500, N = 5), estimations
of state variables are unstable, whereas when n ≥ 1,000, we observe, especially
with longer-dated contracts, that the fit is better in terms of MSE. Hence, to use this
model for empirical applications, at least n = 1,000 may be required in order to
achieve a better fit of state variables, and hence, closer parameter estimates to their
true values.

Table 2 Mean Square Errors of state variables for Models 1 and 2

Model 1 Model 2

N n MSE(χ) MSE(ξ ) MSE(χ) MSE(ξ )

5 200 0.2365 0.2422 0.0691 0.0911
500 0.7216 0.7230 0.2174 0.2180
1,000 0.0019 0.0039 0.0343 0.0282
2,000 0.2432 0.2380 0.1167 0.1118
5,000 0.1291 0.1313 0.1693 0.1720

10 200 0.0464 0.0528 0.0200 0.0142
500 0.0134 0.0174 0.0329 0.0418
1,000 0.0013 0.0022 0.0005 0.0020
2,000 0.0015 0.0022 0.0015 0.0025
5,000 0.0016 0.0020 0.0005 0.0011
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Our findings, backed by AIC, demonstrate that incorporating the AR(p) structure
of the measurement errors in Model 2 and using the unified estimation procedure
surpassed the two-step approach employed in Model 1. The noticeable superiority
is also evident through MSE criterion in the fitting of the state variables.

In summary, given the assumption of independence of measurement errors can-
not be validated, our study provides a new tool which can be used for Schwartz-
Smith two factor model calibration and forecasting of futures prices.

4 Conclusion

This paper presents an extended two-factor model from [24] and [8], for which we
propose the data-driven parameter estimation through modelling of the autoregres-
sive structure of inter-correlated errors in the measurement equations’ system. In
this framework we derived the linear Kalman filter, which was used for joint esti-
mation of the state variables and model parameters.

In the simulation study, we carried out a comparative analysis of the convergence
of the estimates in Models 1 and 2 with respect to the sample size and number of
contracts, as well as accuracy. Model 2 outperformed Model 1 in terms of MSE
and AIC for state variables and parameter estimates, respectively. The simulation
study offered valuable insights into the performance and suitability of the models,
contributing to the advancement of data-driven estimation methodology.

The empirical results presented in Section 3 can be reproduced using MATLAB
code developed by the first author, the link to the code is provided in the footnote
on the title page of the paper.
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