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Abstract An efficient discrete time and space Markov chain approximation em-
ploying a Brownian bridge correction for computing curvilinear boundary crossing
probabilities for general diffusion processes was recently proposed in Liang and
Borovkov (2021). One of the advantages of that method over alternative approaches
is that it can be readily extended to computing expectations of path-dependent func-
tionals over the event of the process trajectory staying between two curvilinear
boundaries. In the present paper, we extend the scheme to compute expectations
of the Feynman–Kac type that frequently appear in option pricing. To illustrate our
approximation scheme, we apply it in three special cases. For sufficiently smooth
integrands, numerical experiments suggest that the proposed approximation con-
verges at the rate O(n−2), where n is the number of steps on the uniform time grid
used.

1 Introduction

Barrier options are widely used path-dependent derivative securities, and there is
extensive literature on their valuation (see e.g. [2], [7] and the references therein).
Most of the literature is focused on the case where the barriers are “flat”. However,
curved boundaries also appear in the context of pricing options on underlying assets
that have a volatility term structure. Using a deterministic time-change, the time de-
pendence in the volatility can be transferred into the boundary, reducing the problem
of pricing call and put options in the Black–Scholes type setting with deterministic
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interest rates to computing the curvilinear boundary crossing probability of a diffu-
sion process (see e.g. Section 3 in [6]). Methods for solving the latter problem are
numerous, and we refer the interested reader to [14] for a literature review. To ex-
tend the aforementioned problem to the case of stochastic interest rates, one needs
to introduce a numeraire process.

It is well-known that, under the no-arbitrage assumption, the fair price of a
replicable derivative on an underlying asset X with maturity T and general payoff
φ(X(T )) is equal to Eφ(X(T ))/N(T ), where E denotes the expectation with respect
to the martingale measure associated with the numeraire process N (for details, see
e.g. Chapter 6 in [4]). If we introduce a barrier feature for the above option using
two time-dependent barriers g− < g+, the payoff of the new option will be given by

φ(X(T ))1{g−(s)< X(s)< g+(s), s ∈ [0,T ]}.

Hence the fair price of the barrier option is equal to

E
[
φ(X(T ))/N(T );g−(s)< X(s)< g+(s), s ∈ [0,T ]

]
. (1)

The purpose of this paper is to extend the Markov chain approximation method
proposed in [14] to compute the above expectation in the case when the numeraire
process takes the form N(T ) = exp{

∫ T
0 V (X(t))dt} for some continuous function V ,

i.e. to evaluate

E
[
e−

∫ T
0 V (X(u))du

φ(X(T ));g−(s)< X(s)< g+(s), s ∈ [0,T ]
]
. (2)

The method suggested in [14] was a development of the approach from [10] for com-
puting boundary non-crossing probabilities of the Brownian motion process. That
approach suggested to replace the continuous dynamics of the underlying Brownian
motion process with those of a denumerable discrete time Markov chain, by dis-
cretising both time and space using uniform grids. The transition probabilities for
these Markov chains were specified to be proportional to the values of the Brownian
motion transition densities for the respective time and space increments. The desired
approximation for the boundary non-crossing probability was then computed in [10]
by multiplying finite-dimensional substochastic matrices obtained by retaining the
entries corresponding to the space nodes located between the given boundaries at
the respective times.

Our modification of this method developed in [14] dramatically improved the
convergence rate of the procedure by shifting and adjusting the uniform space grids
so that they would have nodes lying exactly on the boundaries, and by implementing
one-step Brownian bridge corrections taking into account the possibility that the
process could cross a boundary at a time between the points on the discrete time
grid. At the same time, the method was extended in [14] to a much broader class of
diffusions.

Roughly speaking, one can think about the workings of this method as summing
up the probabilities of all the Markov chain trajectories lying between the bound-
aries (and applying appropriate corrections). As, for each trajectory, its probability is
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given by the product of one-step transition probabilities, one basically “tracks” each
trajectory of the chain in this computational process. Unlike alternative approaches
to computing boundary crossing probabilities, such as the method of integral equa-
tions (see e.g. [11] and further references therein), this provides one with an op-
portunity to compute not only probabilities but also expectations of path-dependent
functionals, finding the values of expressions of the form (2) being of particular
convenience.

Turning back to applications related to (1), we note that when the underlying X is
the spot interest rate, this includes the case when the numeraire is the bank account
process, i.e. V (x) = x. This expression can also be used to price what we call a
hybrid step-barrier option, an option that has a step option feature (see [15]) and a
barrier above the step level (see Example 3 below).

It was reported in [14] that numerical experiments had showed that the proposed
method produces approximations for boundary crossing probabilities with conver-
gence rate O(n−2), where n is the number of nodes on the regular time discretisation
grid. It turns out that this convergence rate is preserved in the new extension of the
method presented in this paper when V is sufficiently smooth. Note that proving the
above-mentioned very fast convergence rate for our scheme is a very difficult task
already in the basic case of computing boundary crossing probabilities. Establish-
ing this rate in the one-sided boundary case with g+ ∈C2 for the Brownian motion
process is work in progress.

The paper is organised as follows. In Section 2 we describe our approximation
procedure and demonstrate its convergence. In Section 3 we present the results of
applying it in three special cases.

2 The method

We will begin by specifying the diffusion process model for the underlying asset X .
We assume a unit diffusion coefficient since we can transform a large class of dif-
fusion processes to this case using the well-known unit-diffusion transform (see
e.g. Section 2 in [14]). Then, we will describe the sequence of Markov chain ap-
proximations and prove that the sequence converges weakly to the desired diffusion
process. Using the weak convergence result, we will show that the corresponding
approximations to the option price that are using the Brownian bridge correction
techniques converge as well. Recall that employing this correction dramatically
improves convergence rates in the basic problem of computing boundary crossing
probabilities [14]. As we will see this applies in the present paper setup as well.

Without loss of generality, we set the terminal time T := 1 since a deterministic
time change can be applied to get the results for a general fixed T < ∞.
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2.1 The setup

Suppose that the underlying asset’s price is modelled by the one-dimensional diffu-
sion process

X(t) = x0 +
∫ t

0
µ(s,X(s))ds+W (t), t ≥ 0,

where {W (t)}t≥0 is a standard Brownian motion process, and x0 is non-random.
Assume the following condition is satisfied:

(C) For any fixed x∈R, one has µ( · ,x)∈C1([0,1]), and for any fixed t ∈ [0,1], one
has µ(t, ·) ∈ C2(R). Moreover, for any r > 0, there exists a Kr < ∞ such that
one has

|µ(t,x)|+ |∂t µ(t,x)|+ |∂xµ(t,x)|+ |∂xxµ(t,x)| ≤ Kr, t ∈ [0,1], |x| ≤ r.

We will also need some notations and conditions related to the boundaries g±. De-
note by C =C([0,1]) the space of continuous functions f : [0,1]→R equipped with
the uniform norm ‖ f‖∞ := supt∈[0,1]| f (t)|. For a fixed x0 ∈ R, consider the class

G :=
{
( f−, f+) : f± ∈C, f−(0)< x0 < f+(0), min

0≤t≤1
( f+(t)− f−(t))> 0

}
of pairs of functions from C and introduce the notation

S( f−, f+) := {v ∈C : f−(t)< v(t)< f+(t), t ∈ [0,1]}, ( f−, f+) ∈ G

for the “bunch” of continuous functions whose graphs are entirely contained in the
strip between the boundaries f±.

Let V : R→ C be a (possibly complex-valued) continuous function and φ : R→
R be some continuous function. The problem we deal with in this paper is how to
compute

Q := E
(

e−
∫ 1

0 V (X(s))ds
φ(X(1));X ∈ G

)
, G := S(g−,g+), (3)

for some (g−,g+) ∈ G . To explain our approach, set Es,x(·) := E(· |X(s) = x) and
introduce Feynman–Kac type time-dependent semigroup {Ts,t}0≤s<t≤1 defined by

Ts,t f (x) = Es,x
(

e−
∫ t

s V (X(u))du f (X(t));g−(u)< X(u)< g+(u),u ∈ [s, t]
)

(4)

and represent (3) as

Q = (T0,tn,1Ttn,2,tn,3 · · ·Ttn,n−1,tn,nφ)(x0), (5)

for
tn,k := k/n, k = 0,1, . . . ,n,
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the uniform partition of [0,1] of rank ∆n := 1/n, n≥ 1. The idea of our method is to
approximate operators Ts,t with their discrete versions. We will implement it in the
next section, leading to approximation (8) to our Q.

2.2 Markov chain approximation

To specify our time-dependent Markov chain approximation, we first define the
space grids En,k and the transition probabilities pn,k, and then introduce the cor-
rective terms πn,k and en,k which account for boundary correction and the presence
of the term with V respectively.

The grids En,k are constructed as follows. Set g±n,k := g±(tn,k), k = 1, . . . ,n, and,
for fixed δ ∈ (0, 1

2 ] and γ > 0, put

wn,k :=


(g+n,k−g−n,k)/∆

1/2+δ
n

bγ(g+n,k−g−n,k)/∆
1/2+δ
n c

, 1≤ k < n,

(g+(1)−g−(1))/∆n
bγ(g+(1)−g−(1))/∆nc , k = n,

assuming that n is large enough such that the integer parts in all the denominators
are positive. We set the time-dependent space lattice step sizes to be

hn,k :=

{
wn,k∆

1/2+δ
n , 1≤ k < n,

wn,n∆n, k = n.

Next, we define

En,k := {g+n,k− jhn,k : j ∈ Z}, k = 1, . . . ,n.

We also put En,0 := {x0} and define the corresponding boundary restricted lattices

EG
n,k := {x ∈ En,k : g−n,k < x < g+n,k}, k = 1, . . . ,n.

Further, for k = 1, . . . ,n, we introduce the discrete time drift and diffusion coeffi-
cients

µn,k(x) :=
(
µ + 1

2 ∆n(∂t µ +µ∂xµ + 1
2 ∂xxµ)

)
(tn,k−1,x)∆n,

σ
2
n,k(x) := (1+ 1

2 ∆n∂xµ(tn,k−1,x))2
∆n,

(6)

and define one-step “pseudo-transition probabilities” (we use this expression be-
cause they do not sum to one, although the normalising constants converge to 1 so
quickly as n→ ∞ that it makes no sense to normalise them, see Remark 7 in [14])
as

pn,k(x,y) := ϕ(y |x+µn,k(x),σ2
n,k(x))hn,k, (x,y) ∈ En,k−1×En,k,
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where ϕ(x |µ,σ2) := (2πσ2)−1/2e−(x−µ)2/(2σ2), x,µ ∈ R, σ2 > 0. We will imple-
ment the Brownian bridge correction for two-sided boundary crossing probabilities
by using the factor

πn,k(x,y) = 1− exp{−2
∆n

(g+n,k−1− x)(g+n,k− y)}− exp{−2
∆n

(g−n,k−1− x)(g−n,k− y)}.

Note that we ignore here the highly unlikely event that the trajectory of the Brow-
nian bridge process hits both the upper and lower boundaries in the small time in-
terval [tn,k−1, tn,k], see [14]. The following expression will be used as a trapezoidal
approximation of the exponential term exp{−

∫ k/n
(k−1)/n V (X(s))ds}:

en,k(x,y) := exp{−∆n
2 (V (x)+V (y))}. (7)

Now we introduce the pseudo-transition matrices Sn,k ∈ R|E
G
n,k−1|×|E

G
n,k| involving

both the boundary crossing correction terms πn,k and our adjustments en,k for the
presence of the exponential terms with V :

Sn,k :=
[
pn,k(x,y)πn,k(x,y)en,k(x,y)

]
(x,y)∈EG

n,k−1×EG
n,k
.

Denoting by φn := [φ(x)]x∈EG
n,n

the n-th payoff column vector, our approximation
to (3) is given by the sequence of matrix products

Qn := Sn,1Sn,2 · · ·Sn,nφn, n≥ 1, (8)

which are discrete analogues of (5).

2.3 Weak convergence

Theorem 1. Let condition (C) be met, (g−,g+) ∈ G , and V : R→ C, φ : R→ R be
continuous functions. Then Qn→ Q as n→ ∞.

Proof. We will use the method of weak convergence. First, we normalise the
pseudo-transition probabilities pn,k and prove that the corresponding sequence of
Markov chains converges weakly to the target diffusion process X using conver-
gence results from [14]. Then we extend this convergence result to a sequence of
auxiliary bivariate processes, where from the desired convergence Qn→Q will fol-
low as these quantities can be expressed as expectations of a suitable functional.

Let {ξn,k}n
k=1 denote a Markov chain with transition probabilities pn,k(x,y)/Cn,k(x),

(x,y) ∈ En,k−1×En,k, where Cn,k(x) := ∑y∈En,k
pn,k(x,y). Furthermore, let X̃n denote

the Brownian bridge-interpolated version of {ξn,k}n
k=1, i.e.

X̃n(t) := B
ξn,k−1,ξn,k
n,k (t), t ∈ [tn,k−1, tn,k], k = 1, . . . ,n,
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where
Bx,y

n,k(t) := B◦n,k(t)+ x+n(t− tn,k−1)(y− x), x,y ∈ R,

and B◦n,k(t), t ∈ [tn,k−1, tn,k], are independent Brownian motions “pinned” at the time-
space points (tn,k−1,0) and (tn,k,0), these bridges being independent of our chain.
From Corollary 1 in [14], we know that X̃n⇒ X as n→∞, where “⇒” denotes weak
convergence of random elements in the respective functional space (in this case, in
space (C,‖ · ‖∞)).

Define the two-dimensional process X(t) := (X(t),Z(t)) by letting

Z(t) :=
∫ t

0
V (X(s))ds, t ∈ [0,1].

Then we can rewrite Q from (3) as

Q = E
(
Ψ(X(1));X ∈ G

)
,

where Ψ(X(1)) := φ(X(1))eZ(1). Our approximation (8) can also be rewritten as

Qn = E
(
Ψ(Xn(1)); X̃n ∈ G

)
,

where Xn(t) := (X̃n(t),Zn,bntc), Zn,0 = 0 and, for k = 0,1, . . . ,n,

Zn,k :=
∆n

2

k

∑
i=1

[
V (X̃n(tn,i−1))+V (X̃n(tn,i))

]
.

We will now show that (X̃n,Zn)⇒ (X ,Z) in the respective Skorokhod space by
verifying the consistency of infinitesimal moments and tightness. We first define the
auxiliary process Ẑn(t) := Ẑn,bntc, t ∈ [0,1], with Ẑn,k =∑

k−1
i=0 V (X̃n(tn,i))∆n and show

that (X̃n, Ẑn)⇒ (X ,Z).
Define the joint process X̃n(t) := (t, X̃n(t), Ẑn,bntc) and the stopping time

τ
r
n := inf

{
t ≥ 0 : ‖X̃n(t)‖∨‖X̃n(t−)‖> r

}
,

‖u‖ := |u1| ∨ |u2| ∨ |u3| being the Chebyshev norm of u = (u1,u2,u3) ∈ R3. Note
that

Ẑn,k+1 = Ẑn,k +V (X̃n(tn,k))∆n, Ẑn,0 = 0.

Let ∆ Ẑn,k+1 := Ẑn,k+1− Ẑn,k. It follows immediately that, for all r > 0,

lim
n→∞

max
1≤k≤bnτr

nc

∣∣∣∆−1
n E

(
∆ Ẑn,k+1 | Ẑn,k = z, X̃n(tn,k) = x

)
−V (x)

∣∣∣= 0

and
lim
n→∞

max
1≤k≤bnτr

nc
∆
−1
n Var

(
∆ Ẑn,k+1 | Ẑn,k = z, X̃n(tn,k) = x

)
= 0.
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Tightness of the sequence of the distributions of X̃n in the respective Skorokhod
space is immediate since V is bounded on compact sets and hence it follows from
Corollary 4.2 in [9] that (X̃n, Ẑn)⇒ (X ,Z). For all r > 0,

max
1≤k≤bnτr

nc
|Ẑn,k−Zn,k| ≤

∆n

2
|V (0)+V (r)| a.s.−−→ 0, n→ ∞,

and hence it follows that (X̃n,Zn)⇒ (X ,Z) as well. By the continuous mapping theo-
rem applied to the function (x,y) 7→ φ(x)ey, the Portmanteau theorem (see e.g. p. 24
in [3]), and Corollary 2 from [14], the claimed result follows from the established
weak convergence of the processes and boundedness of the integrands in Q. �

3 Numerical examples

In this section, we will illustrate the efficiency of our approximation scheme (8). The
run times for these computations using the programming language Julia run on
a MacBook Pro 2020 laptop computer with an i5 processor (2 GHz, 16 GB RAM)
are basically the same as the ones reported in [14] for computing boundary-crossing
probabilities employing the same hardware and software. To evaluate the partial
derivatives in (6), we used the package HyperDualNumbers.jl

We apply our algorithm in three different examples, where V (x) is equal to−ix2,
x, and κ1{x > r} respectively, for some x,κ,r ∈ R. Due to the discontinuity of the
function V at x = r in the last case, we modify the scheme slightly for that choice of
V .

For each example, we compute Qn and plot the observed convergence rate of
Qn+1−Qn to zero as n grows. Closed-form expressions for Q are not available in
any of these examples. Due to the iterative nature of our scheme (8), as a byproduct,
we obtain approximations to v(t,x) := (Tt,1φ)(x), where Ts,t appeared in (4). We
will plot the surfaces v(t,x) for each example as well.

3.1 The case V (x) =−ix2

To demonstrate general methods for obtaining distributional properties of Wiener
functionals of the form

∫ 1
0 V (W (s))ds, the characteristic function of the random

variable
∫ 1

0 W (s)2 ds was computed in [12] and [8] yielding

Eexp
{

iλ
∫ 1

0
W (u)2 du

}
=

√
sech
√

2iλ , λ ∈ R.

Using our scheme, we compute approximations to the expressions of this form re-
stricted to the event of non-crossing given boundaries:
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v(t,x) = E
(

exp
{

i
∫ 1

t
W (u)2 du

}
;g−(s)<W (s)< g+(s), s ∈ [t,1]

∣∣∣∣W (t) = x
)
,

with time-dependent boundaries

g±(t) =±4∓ t2, t ∈ [0,1].

In Fig 1, we plot our approximation of the form (8) to v(t,x). We see from Fig 2,
that |ReQn+1−ReQn| converges to zero at the rate O(n−3), suggesting that |ReQn−
ReQ|= O(n−2) as n→ ∞.
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Fig. 1: Approximations to Rev(t,x) and Imv(t,x) using (8) with parameters: n= 30,
γ = 2, δ = 0, µ(t,x) = 0, and V (x) =−ix2.

3.2 The case V (x) = x

In this example, we price a zero-coupon bond with a two-sided time-dependent
knock-out barrier, using a one-factor Hull–White model for spot interest rates. This
problem was also explored in [13]. For α,σ > 0, the Hull–White model assumes
that the spot interest rate r has the following dynamics:

dr(t) = (θ(t)−αX(t))dt +σ dW (t), t ≥ 0,

where θ(t) depends on α , σ and the currently observed instantaneous forward rate
curve f (t) (see e.g. Proposition 10.1.6 in [1]):

θ(t) = f ′(t)+α f (t)+
σ2

2α
(1− e−2αt),
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Fig. 2: The log-log plot of |ReQn+1 −ReQn| is displayed by the blue line. The
dashed straight line has a slope equal to −3, suggesting that |ReQn−ReQ| is con-
verging at rate O(n−2).

assuming that r(0) = f (0). To apply our scheme to this example, we scale all the
space variables by σ to transform r(t) into a unit-diffusion process. Using the mar-
tingale pricing theorem, the fair price of a one-year maturity zero-coupon bond with
a barrier option feature is equal to

E
(
e−

∫ 1
0 r(s)ds;r ∈ G

)
.

We used the time-dependent boundaries given by

g±(t) =±0.04(1∓ 1
2 sin(3t)), t ∈ [0,1].

To demonstrate the performance of our scheme, we set α = 0.01, σ = 0.01 and a
flat instantaneous forward curve f (t) ≡ 0.03. In the left pane in Fig 3, we plot our
approximation of

v(t,x) = E
(

exp
{
−
∫ 1

t
r(u)du

}
;g−(s)< r(s)< g+(s), s ∈ [t,1]

∣∣∣∣r(t) = x
)
, (9)

for different initial values using our approximation algorithm (8). We see from the
right pane in Fig 3 that Qn+1−Qn converges to zero at the rate O(n−3), suggesting
that |Qn−Q|= O(n−2) as n→ ∞.

3.3 The case V (x) = κ1{x > r}

The standard barrier option is one of the most popular first-generation exotic deriva-
tives, due to its cheaper price compared to their vanilla counterparts. If an investor
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Fig. 3: The left pane shows an approximation to v(t,x) from (9) for different initial
values (t,x) using (8) with parameters n = 30, γ = 2, δ = 0, µ(t,x) = (θ(t)−αx),
σ = 0.01 and V (x) = x. On the right pane, we present a log-log plot of |Qn+1−Qn|
(the blue line). The dashed black straight line has a slope equal to −3.

believes that a certain price is unlikely to fall below a certain level, they can choose
to include a knock-out feature in the option, which reduces the price. These cost
reductions can be substantial when volatility is high. However, standard barrier op-
tions come with a few disadvantages. Option buyers can lose their entire investment
due to short time price spikes once the price is near the barrier. The delta sensitivity
of such a barrier option is discontinuous near the boundary, making it difficult to
hedge for options dealers.

The so-called “step option” was introduced in [15] to address these issues. The
payoff of an “up-and-out” step option with finite knock-out rate κ ≥ 0 written on an
option with payoff φ is given by the formula

exp{−κτr(T )}φ(X(T )),

where κ > 0 is a constant and τr(t) is the sojourn time of the underlying price
process X above the level r > 0 until time t:

τr(t) :=
∫ t

0
1{X(s)> r}ds, t ∈ [0,T ].

We will assume X to be the standard Brownian motion process W in this example.
This option can be modified by adding barrier features that will further reduce

its price. We introduce a time-dependent knock-out barrier g+ above the step option
barrier r and a lower knock-out barrier g−. We call this option a “hybrid step-barrier
option”. Its payoff is given by

exp{−κτr(T )}φ(X(T ))1{g−(s)< X(s)< g+(s), s ∈ [0,T ]}.
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The expectation of this functional is a special case of our Q from (3) with V (x) =
κ1{x> r}. In this case, the trapezoidal approximation (7) converges very slowly due
to the discontinuity of V at the occupation level r. We now describe a modification
of en,k to address this issue. Let Et,x,y(·) := E( · |W (0) = x,W (t) = y). Conditioning
W on endpoints (0,x) and (t,y), one can expect that for small times t, the sojourn
time τr(t) is “almost independent” of the boundary crossing event:

Et,x,y[e−κτr(t)φ(X(t));g−(t)< X(s)< g+(s), s ∈ [0, t]
]

≈ Et,x,ye−κτr(t)Et,x,y[
φ(X(t));g−(t)< X(s)< g+(s), s ∈ [0, t]

]
.

There is a semi-explicit formula for Et,x,ye−κτr(t) given in (1.4.7) in [5]. However,
efficient numerical computations of the double convolution present in that formula
was challenging in the case when x < r and y > r. Hence we decided to use the
following simple approximation.

Lemma 1. For x,y,κ ∈ R, as t ↓ 0,

Et,x,ye−κτr(t) = 1−κ

∫ t

0
Φ

(
r− x− s

t (y− x)√
(t− s)s/t

)
ds+O(t2),

where Φ(·) is the standard normal distribution function and Φ(x) := 1−Φ(x).

Proof. Since τr(t)≤ t, a Taylor series expansion of e−x yields

Et,x,ye−κτr(t) = 1−κEt,x,y
τr(t)+O(t2).

Changing the order of integration using Fubini’s theorem we get

Et,x,y
τr(t) =

∫ t

0
Pt,x,y(W (s)> r)ds.

Since
(W (s) |W (0) = x,W (t) = y)∼ N

(
x+

s
t
(y− x),

s
t
(t− s)

)
,

one has

Et,x,y
τr(t) =

∫ t

0
Φ

(
r− x− (y− x)s/t√

(t− s)s/t

)
ds.

�

Remark 1. One could actually compute the second-order term in the expansion for
Et,x,ye−κτr(t) using the following formula for the second moment of τr(t):

Et,x,y
τr(t)2 =

∫ t

0

∫ t

0
Pt,x,y(W (u)> r,W (s)> r)duds.

Let W t,x,y := {W t,x,y(s) : s ∈ [0, t]} denote the Brownian motion pinned at (0,x) and
(t,y). For brevity, we also set W t :=W t,0,0. It is well-known that, for s < t,
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EW t,x,y(s) = x+
s
t
(y− x), Var W t,x,y(s) =

s
t
(t− s),

and hence

Pt,x,y(W (u)> r,W (s)> r) = P

(
W t(u)√

Var W t(u)
> ru,

W t(s)√
Var W t(s)

> rs

)
,

where

rv :=
r− x− (y− x)v/t√

(t− v)v/t
, v ∈ [0, t].

Now since EW t(s)W t(u) = (t−u)s/t, s < u, we get

ρ : = Cov

(
W t(s)√

Var W t(s)
,

W t(u)√
Var W t(u)

)

=
EW t(s)W t(u)√

Var W t(s)Var W t(u)
=

√
s(t−u)
u(t− s)

. (10)

Therefore
Pt,x,y(W (u)> r,W (s)> r) = 1−Φρ(−rs,−ru),

where Φρ denotes the bivariate standard normal cumulative distribution function
with correlation ρ given by (10). Hence we have

Et,x,y
τr(t)2 =

∫ t

0

∫ t

0
(1−Φρ(−rs,−ru))duds.

However, numerically computing this integral turned out to be too computationally
expensive and did not improve the efficiency of the algorithm.

To summarise, our modification of the term en,k in this special case when V is
discontinuous amounts to replacing (7) with

ẽn,k(x,y) = 1−κ

∫ t

0
Φ

(
r− x− (y− x)s/t√

(t− s)s/t

)
ds. (11)

In our numerical implementation, we computed the time integral appearing in (11)
using Gaussian quadratures. To demonstrate the performance of our scheme, we
set r = 1/19, κ = 2 and g±(t) = ±4∓ t2. Without replacing en,k(x,y) with (11),
the convergence of |Qn+1−Qn| to zero is highly non-smooth and slow. With the
proposed modification, the scheme appears to converge at rate O(n−1), as shown
in the right pane of Fig 4. The left pane in Fig 4 shows our approximation for the
values of

v(t,x) = E
(

e−κ
∫ 1
t 1{W (s)>r}du;g−(s)<W (s)< g+(s), s ∈ [t,1]

∣∣∣∣W (t) = x
)
. (12)
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Fig. 4: The left pane shows our approximation to v(t,x) from (12) using (8) with
modification (11). In this example we used parameters n = 30, r = 1/19, κ = 2,
δ = 0, µ(t,x) = 0, and V (x) = κ1{x > r}. The right pane shows a log-log plot of
|Qn+1−Qn|, displayed by the blue line. The dashed black straight line has a slope
equal to −2, which indicates that Qn−Q = O(n−1).
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