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Abstract We study the asymptotic behavior of ruin probabilities, as the initial re-
serve goes to infinity, for a reserve process model where claims arrive according to
a renewal process, while between the claim times the process has the dynamics of
geometric Brownian motion-type Itô processes with time-dependent random coeffi-
cients. These coefficients are “reset” after each claim time, switching to new values
independent of the past history of the process. We use the implicit renewal theory to
obtain power-function bounds for the eventual ruin probability. In the special case
when the random drift and diffusion coefficients of the investment returns process
remain unchanged between consecutive claim arrivals, we obtain conditions for the
validity of the power function decay behaviour (as the initial reserve tends to infin-
ity) for the ruin probability for our model.

1 Introduction and the main result

In the classical Cramér–Lundberg collective risk model (going back to a 1903
F. Lundberg’s work), the insurance company reserve process X is assumed to have
dynamics of the form

X(t) = u+ ct−
N(t)

∑
j=1

ξ j, t ≥ 0, (1)
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where c is a constant premium payment rate, N is a Poisson process of claim
epochs Tj, j ≥ 1, and ξ j, j ≥ 1, are positive i.i.d. random variables modeling claim
sizes made at the respective claim times, their sequence being independent of N.

The main question posed in the context of this model was on the behavior of the
ultimate ruin probability

ψ(u) := P
(

inf
t>0

X(t)< 0
)

as the initial reserve u tends to infinity. Clearly, in model (1), the ruin (X turning
negative) can only occur at a claim time. Hence one deals here with a question on
the asymptotic behavior of the distribution tail of the global maximum of a random
walk with jumps of the form Z j := ξ j− cτ j, where τ j := Tj−Tj−1, j ≥ 1 (setting
T0 := 0). Hence ψ(u)< 1 for u > 0 and ψ(u)→ 0 as u→∞ once the safety loading
condition

EZ ≡ Eξ − cEτ < 0 (2)

is met (here and in what follows, we use the convention that Z d
= Z1, ξ

d
= ξ1, etc.).

But what can one say about the rate at which ψ(u) vanishes at infinity? The most
famous result in this classical setting is the celebrated Cramér–Lundberg approxi-
mation that holds in the case of exponentially light tails and can be stated as follows.

For a random variable V , denote by

φV (q) := EeqV , q ∈ R, qV := sup{q ∈ R : φV (q)< ∞} (3)

its moment generating function and the right end-point of the interval on which the
latter is finite, respectively. If φZ(qZ) ≥ 1 then, under condition (2), there exists a
unique solution γ > 0 to the equation φZ(q) = 1 and if, in addition, φZ(qZ) > 1 or
φZ(qZ) = 1 and φ ′Z(qZ−)< ∞ then

ψ(u) =Ce−γu(1+o(1)) as u→ ∞, (4)

where the constant C admits a closed-form expression (see e.g. Section 22 in [3]
or Section I.4d in [2]). Moreover, it turns out that approximation (4) is rather sharp:
there is an ε > 0 such that the remainder term o(1) in it can be replaced with o(e−εu).
Furthermore, under the same moment assumptions on the distribution of Z, approx-
imation (4) also holds for the Sparre Andresen model that differs from (1) only in
that the process N is just a renewal process (so that the inter-claim times τ j are
general positive i.i.d. random variables). In this case, the remainder term will be de-
caying exponentially fast under the additional assumption that the distribution of Z
contains an absolutely continuous component (p. 129 in [3]).

Note that in the case where φZ(qZ) = 1 and φ ′Z(qZ−) = ∞, the problem on the
asymptotics of ψ(u) is more difficult and the asymptotic behavior of this probability
as u→ ∞ can have a different form, see e.g. p. 136 in [3] and Section 6.5 in [4].
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Of course, the Cramér–Lundeberg model (1) and its Sparre Andersen extension
are oversimplifications of real-life situations. These models assume that all the re-
serves of the insurance company are kept in a safe bank account. Over the last two
decades, several authors turned their attention to more realistic models in which the
reserve capital can be invested in a risky financial asset (considering a single risky
asset is reasonable due to the common practice of investing in a market portfolio
or an index). Models with surplus generating process and investments in risky asset
modelled by Lévy processes were discussed, e.g., in [20, 21, 23]. In particular, it
was noted in [23] that the ultimate ruin probability and the Laplace transform of
the ruin time are solutions to suitable boundary value problems for the respective
integro-differential equations.

A discrete time model with stochastic interest rates and returns was considered
in [18], the main results (obtained using the “crude” large deviation theory) included
power asymptotic behavior of the ruin probability as a function of the initial re-
serve. A power function ruin probability asymptotics behavior was also obtained
in [22] for the Lévy processes-based models under suitable conditions, basing on
the results from [21]. Assuming (1) (and also allowing a more general Lévy pro-
cess model) and that the risky investment returns follow an independent geomet-
ric Lévy process, power function bounds for ψ(u) were obtained in [15]. A power
function asymptotic behavior was obtained in [9] for a modification of the classical
model (1) with investments in a risky asset with price following an independent geo-
metric Brownian motion (BM) process with mean return µ ∈R and volatility σ > 0
(as in (6) below, but with a constant c(s) ≡ c); the first steps in that direction were
announced in [8]). Assuming that the claim sizes are exponentially distributed and
setting β := 2µ/σ2−1, it was shown in [9] that

ψ(u) =Cu−β (1+o(1)) as u→ ∞ (5)

for some constant C > 0 when β > 0 (and that ψ(u) ≡ 1 when β < 0). For claims
with a general distribution such that Eξ

β

1 < ∞, were obtained upper and lover power
bounds with the right-hand sides of the form Cu−β for come constants C.

Note that the presence of the moment condition on ξ1 (here and in our Theorem 1
below) is quite natural as for heavy-tailed claim distributions, the asymptotics of the
ruin will be governed by the distribution tail of the “integrated tail law” for ξ1 when
that tail dominates u−β (cf. [1] and Chapter X in [2]).

These results were extended in [24] to a modification of the above model with a
variable premium payment rate c(t) yielding the following dynamics:

X(t) = u+
∫ t

0
c(s)ds+

∫ t

0
µX(s)ds+

∫ t

0
σX(s)dW (s)−

N(t)

∑
j=1

ξ j, (6)

where W is a BM process independent of N and {ξ j}, the coefficients µ and σ are
constant, and c(t) = c(t,X) ∈ [0,c] (with a constant c < ∞) is a bounded adapted
function such that there exists a unique strong solution to the above equation. Upper
and lover bounds with the right-hand sides of the form Cu−β were obtained under
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appropriate moment conditions on ξ1, whereas exact asymptotics of the form (5)
were established for generally distributed ξ1 (satisfying Eξ

β+δ

1 <∞ for some δ > 0)
in the special case where c(t) = c1eγt for some γ ≤ 0. The toolbox used in that paper,
as in some other previous work as well, was based on the implicit renewal theory.

It may seem paradoxical at the first glance that, in all these papers establishing
power asymptotics of the form (5), the distributions of the “main source of risk” —
the claims made against the insurer — could have a finite exponential moment, as in
the case leading to the much faster exponential decay (4). This means that investing
in a risky asset (even with significant mean positive returns) dramatically increases
the riskiness of the insurance business. In Remark 5 below we will provide an intu-
itive explanation of the emergence of the power behavior at infinity for ψ . Roughly
speaking, it is due to the closeness of the dynamics of an embedded discrete time
process (the values of the risk process u−X at the claims times) to those of the
exponential of a random walk with i.i.d. jumps and negative trend. The ruin occurs
when the global supremum of that walk is “large”, of the order of magnitude of lnu,
and the probability of this has the form of the right-hand side of (4), with u replaced
by lnu

Over the last few years, several authors turned their attention to versions of
model (6) with random switching. In [25], the authors considered a Markov-
modulated model, governed by an “external environment process” {J(t)}t≥0, as-
sumed to be a homogeneous, irreducible and recurrent continuous time Markov pro-
cess, with a finite state space E. All the components of the reserve process depend
on the state of J(t): given that J(t) = i ∈ E, arrivals occur according to a Poisson
process with rate λi, the (absolutely continuous) claim distribution depends on i,
premiums are received at a rate ci > 0, and the drift and diffusion coefficients of the
risky return process also depend on i. Under these assumptions, a system of integro-
differential equations was derived for the vector of ruin probabilities (indexed by
the initial state of the modulating Markov chain). Switching to the corresponding
Laplace transforms and using Karamata Tauberian theorems, the authors then derive
the asymptotic behaviour of the ruin probailities, but only in the case when both the
drift and diffusions coefficients for the risky asset price process do not depend on
the state of the modulating process J.

In [7], it was assumed that the geometric BM process modelling the dynamics
of the risky asset has stochastic drift and volatility coefficients: µ = µθ(t), σ =
σθ(t), where {θ(t)}t≥0 is a time-homogeneous (hidden) Markov chain with state
space {0,1} independent of all the other stochastic ingredients of the model. Using
implicit renewal theory, the authors derived two-sided power function bounds of the
form

0 < liminf
u→∞

uβ
ψ(u)≤ limsup

u→∞

uβ
ψ(u)< ∞ (7)

for the ruin probability. These results were extended in [12] to the case where
{θ(t)}t≥0 has an arbitrary finite state space.

In [6] a Sparre Andersen type model was considered, where the dynamics of the
risky asset used for investment was given by a general Lévy process {R(t)}t≥0 (with
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the assumption that its jumps are always greater than −1):

X(t) = u+
∫ t

0
X(s−)dR(s)−

N(t)

∑
j=1

ξ j,

where {N(t)}t≥0 is now a renewal process (all the components of the model were,
as usual, assumed to be independent). Using recent results from the theory of dis-
tributional equations, the authors derived for this model two-sided power function
bounds of the form (7). That paper was complemented by note [13], where the au-
thors used semi-Markov processes techniques to extend the results to the case of
annuities and models with two-sided jumps.

One can also mention here paper [14] that deals with the ruin problem when
an insurance company that has two business branches, life insurance and non-life
insurance (so that the reserve process would have both positive and negative jumps),
and invests its reserve into a risky asset with the price dynamics given by a geometric
Brownian motion. For the case of exponentially distributed jumps, it was shown
that the non-ruin probability is a solution of an ordinary differential equation of the
fourth order. Asymptotic analysis of the latter led to the conclusion that the ruin
probability vanishes the same way as in the already studied cases of models with
one-side jumps.

In the present note, we extend (6) to another version of the Sparre Andersen-type
model with investment in a risky asset that involves random switching. To formally
describe our model, in addition to the i.i.d. sequence {ξn}n≥1 of claim sizes (as
above), introduce an independent of it i.i.d. sequence of quadruples

(µn(·),σn(·),τn,Wn(·)), n≥ 1, (8)

and (independent) filtrations {Hn = {Hn(t), t ≥ 0}}n≥1, where Wn is a standard
Wiener process which is a martingale w.r.t. filtration Hn, while the process µn is
adapted to Hn and locally integrable a.s., σn is progressively measurable (w.r.t. Hn)
and locally square-integrable a.s., and τn > 0 are stopping times w.r.t. Hn (in par-
ticular, they may be independent of Wn, assuming Hn large enough). About c(t) we
will assume, as in [24], that it is right-continuous and takes values in [0,c] with some
0 < c < ∞ and is adapted in an appropriate way (omitting technical details to avoid
making exposition too cumbersome) such that there exist unique strong solutions to
the equations describing our model.

Our reserve process follows the dynamics of (6), where the drift and diffusion
coefficients µ and σ are random processes of the form

µ(t) =
∞

∑
n=1

µn(t−Tn−1)1[Tn−1,Tn)(t), σ(t) =
∞

∑
n=1

σn(t−Tn−1)1[Tn−1,Tn)(t),

while N(t) = ∑
∞
n=1 1(0,t](Tn), Tn := ∑

n
i=1 τi, is the renewal process generated by the

inter-arrival times τn > 0. We assume that
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µn(t)≥ µ >−∞, 0 < σn(t)≤ σ < ∞ a.s.

for some constant µ,σ .
Thus, according to the suggested model, our insurance company commences at

time t = 0 with an initial endowment u, faces a renewal-reward claims process with
claim sizes ξn and inter-claim times τn, and receives premium inflow at a bounded
non-negative random rate c(t). During the time period (Tn−1,Tn), the company ob-
tains a rate of return following a diffusion process with random time-dependent
drift coefficient µn and volatility σn, which are “switched” to µn+1 and σn+1 at
time Tn. The random regime switching for the investment component may be re-
lated to changing the investment policy or insurer’s economic environment follow-
ing claim payments. Considering the proposed model is also suggested by the inner
logic of the mathematical problem per se.

To state our main results, we first need to introduce some notations. Follow-
ing the standard approach used, in particular, in [15] and [24], we note that ruin
for this model can only occur at one of the claim times Tn. Therefore, for the
ruin probability analysis, it suffices to consider the embedded discrete time process
{Sn := X(Tn)}n≥0 (setting T0 := 0) since

ψ(u) = P
(

inf
n≥1

Sn < 0
)
. (9)

The dynamics of (6) inside intervals [Tn−1,Tn) are those of solutions to linear
stochastic differential equations with the respective initial values Sn−1. Using the
available in closed form solutions to such problems (see e.g. Chapter 9 in [17]),
noting that Sn = X(Tn−)−ξn, and introducing notations

Kn(s) :=
∫

τn

s
(µn(u)−σ

2
n (u)/2)du, Zn(s) :=

∫
τn

s
σn(u)dWn(u), s ∈ [0,τn],

Kn := Kn(0), Zn := Zn(0),

νn :=−Kn−Zn, λn := e−νn , ζn :=
∫

τn

0
eKn(s)+Zn(s)c(Tn−1 + s)ds−ξn, (10)

we obtain that

Sn = λnSn−1 +ζn, n≥ 1, S0 = u, (11)

Note that, due to our assumptions, {(Kn,νn)}n≥1 is an i.i.d. sequence, whereas
{ζn}n≥1 does not need to be so.

Recall that, for sequences of random elements, we agreed to omit for brevity’s
sake the subscript n in the case where n = 1.

Referring to (3), we will use the following lemma to introduce one more notation.

Lemma 1. If φν(qν) ∈ (1,∞], Eτ < ∞ and EK ∈ (0,∞) then qν > 0 and there exists
a β ∈ (0,qν) such that φν(β ) = 1.
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We will refer to the coefficient β from Lemma 1 as the Frolova exponent for our
model, as the power decay behaviour of the form (5) (with β := 2µ/σ2− 1 in the
basic Cramér–Lundberg model with risky investments described by a geometric BM
process) was apparently first conjectured in [8].

Remark 1. Note that as φν is left-continuous on (0,qν), one has β < qν . Therefore
Eλ−(β+δ ) ≡ φν(β +δ )< ∞ for any δ ∈ (0,qν −β ) 6=∅.

Our main result is stated in the following theorem.

Theorem 1. Assume that φν(qν) ∈ (1,∞], Eτ < ∞, EK ∈ (0,∞), and Eξ β < ∞ for
some δ > 0, where β is the Frolova exponent for our model. Then

limsup
u→∞

uβ
ψ(u)≤C+. (12)

If, in addition, (µ(·),σ(·),τ) and W (·) are independent, Eξ β+δ < ∞ for some δ > 0
and

qτ > β
2
σ

2/2+β (σ2/2−µ)+ (13)

then

liminf
u→∞

uβ
ψ(u)≥C−. (14)

Here 0 <C− ≤C+ < ∞ are some constants.

Remark 2. The existence of the Frolova exponent β > 0 is ensured since the con-
ditions of Lemma 1 are clearly met under the assumptions of Theorem 1. Without
loss of generality, in what follows we will assume about the δ from the conditions
of Theorem 1 that δ ∈ (0,qν −β ) (see Remark 1).

Remark 3. Condition EK = E
∫

τ

0 (µ(u)− σ2(u)/2)du > 0 means that “volatility”
σ(t) cannot be “large” in some average sense. Recall that σ2/2 > µ implies certain
ruin in the models with constant µ and σ considered in [9] and [24].

Remark 4. Observe that if φτ(q) < ∞ for any q > 0 then condition (13) is clearly
superfluous.

The proof of Theorem 1 is given in Section 2.
The existence of the Frolova exponent β is the key factor for establishing the

power behaviour of the ruin probability. Given the structure of our random vari-
able ν , verifying the existence of such a β in the general case is a complicated task.
In Section 3, we will establish a sufficient condition for the existence of the Frolova
exponent in the more tractable special case when

µn(t)≡ µn(0) =: µn and σn(t)≡ σn(0) =: σn (15)

do not depend on time (so that the random drift and diffusions coefficients for
the return on investments process remain unchanged during each of the intervals
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[Tn−1,Tn), n ≥ 1). Moreover, we will assume that the components (µn,σn), τn and
Wn(·) of our quadruples (8) are jointly independent. The problem admits in this
case an elegant solution: it turns out that the answer (given in Theorem 2 stated and
proved in Section 3) basically depends on “concentration of probability” in vicin-
ity of a certain straight line tangent to the support of the distribution of the random
vector (µ,σ2/2).

2 Proof of Theorem 1

Proof of Lemma 1. That qν > 0 in clear since φν(qν)> 1. Further,

Eν =−EK−EZ =−EK < 0 (16)

as EZ =E
∫

τ

0 σ(u)dW (u)= 0 by the optional stopping theorem (note that E|ν |<∞).
Since φν is a convex function and φν(qν) ∈ (1,∞], the existence of the claimed β is
equivalent to having φ ′ν(0+)< 0, which is an immediate consequence of (16). �

Proof of Theorem 1. Our line of argument follows the overall logic employed in [24].
Iterating (11) and setting Λn := ∏

n
k=1 λk, n≥ 1, we get

Sn = Λnu+Λn

n

∑
k=1

Λ
−1
k ζk, n≥ 1. (17)

First we will prove the upper bound (12). Clearly,

(Qk,Mk) := {(ξk,1)/λk}k≥1

is an i.i.d. sequence. Set

Rn :=
n

∑
k=1

Qk

k−1

∏
i=1

Mi, n≥ 1, (18)

with the usual convention that ∏
k
i= j = 1 when j > k. Since Q,M > 0, the sequence

{Rn}n≥1 is clearly increasing so that

Rn ↑ R a.s. (19)

for some (possibly improper) random variable R≤ ∞.
In view of (10), one has ζk ≥−ξk, k ≥ 1, and hence we obtain from (17) that

Sn ≥Λnu−Λn

n

∑
k=1

Λ
−1
k ξk = Λn(u−Rn)≥Λn(u−R), n≥ 1. (20)

Hence it follows from (9) that
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ψ(u)≤ P(R > u), u > 0. (21)

Remark 5. One can clarify the emergence of the power decay for ψ as follows.
Clearly, Un := ∑

n
k=1 νk, n ≥ 1, is a random walk with i.i.d. jumps νk with negative

trend (see (16)) and φν(β ) = 1. Hence by the classical Cramér–Lundberg result (4)
for U := maxn≥1 Un, one has P(U > w)∼Ce−βw as w→ ∞.

Now in view of (17), ruin is equivalent to the event
{

supn≥1 ∑
n
k=1(−ζk)eUk > u

}
which actually occurs “due” to a few terms in these sums, with k close to the point n′

such that U = Un′ (cf. the argument in the proof of Theorem 4 in [5]). So one can
expect that the probability of ruin behaves like P(U > lnu) ∼Ce−β lnu = Cu−β as
u→ ∞.

That R is a proper random variable follows immediately from the following
lemma, which is a direct consequence of Theorem 1.6 in [26]:

Lemma 2. Let {(An,Bn)}n≥1 be an i.i.d. sequence of bivariate random vectors, and

Zn(x) := x
n

∏
j=1

A j +
n

∑
k=1

Bk

k−1

∏
j=1

A j, n≥ 1, x ∈ R. (22)

Assume that E ln |A| < 0 and E(ln |B|)+ < 0, where z+ := max{0,z}, z ∈ R. Then
Zn(x)→ Z in distribution as n→∞ for all x∈R, where the distribution of the proper
random variable Z satisfies the random equation

Z d
= B+AZ, (23)

(A,B) and Z on the right-had side being independent of each other.

Indeed, our sequence (18) is of the form (22) with x = 0 and (An,Bn) = (Mn,Qn),
n≥ 1, and E ln |A|= E lnλ−1 = Eν < 0 by (16), whereas

E(ln |B|)+ = E(ln(ξ/λ ))+ = E(lnξ +ν)+ ≤ E(lnξ )++Eν
+ < ∞

as Eξ β < ∞ and E|ν |< ∞ (cf. Lemma 1).
Hence, by Lemma 2, the sequence {Rn} converges as n→ ∞ in distribution to a

proper random variable, which implies that the a.s. limit R from (19) is proper as
well and satisfies the random equation

R d
= Q+MR, (24)

where R and (M,Q) on the right-hand side are independent of each other.
Now to complete the derivation of the desired upper bound using (21) it remains

to turn to the implicit renewal theory. We will make use of the following lemma
which is a direct consequence of Theorem 4.1 in [10].

Lemma 3. Assume that the distribution of a bivariate random vector (A,B) with
A≥ 0 a.s. is such that, for some α > 0,
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EAα = 1, EAα(lnA)+ < ∞, E|B|α < ∞,

while the conditional distribution of lnA given A 6= 0 is non-arithmetic. Then solu-
tion to (23) satisfies

lim
u→∞

uα P(Z > u) =C,

where C := E
[
((B+AZ)+)α − (AZ+)α

]
/(αEAα lnA) ∈ (0,∞).

To apply this lemma to our equation (24) with (A,B) = (M,Q) and α = β , it
suffices to note that EMβ = φν(β )= 1, EQβ =Eξ β Mβ =Eξ β EMβ =Eξ β <∞ due
to independence, and EMβ (lnM)+ = Eeβν ν+ < ∞ since Ee(β+δ )ν < ∞ for some
δ > 0 (see Remark 2). That lnM given M 6= 0 is non-arithmetic is obvious from the
definition of M = eν and the presence of the Itô integral in ν . This completes the
proof of the upper bound (12).

Now we will proceed to proving the lower bound (14). The main tool here is the
following assertion from [16] (see also [10] and [19]).

Lemma 4. Assume that Y satisfies the equation

Y d
= B+AY+, (25)

where (A,B) and Y on the right-hand side are independent of each other, A > 0 a.s.,
and the distribution of (A,B) is such that P(A > 1,B > 0)> 0. If, for some α,δ > 0,

EAα = 1, EAα+δ < ∞, E|B|α+δ < ∞,

and lnA is absolutely continuous, then

lim
u→∞

uα P(Y > u) =C+o(u−h)

for some positive constants C and h.

To apply this result, we turn to representation (17) and use the natural upper
bound for ζn :

ζn ≤ ζ n := c
∫

τn

0
exp{Kn(s)+Zn(s)}ds−ξn

to get the inequality

Sn ≤ Sn := Λnu+Λn

n

∑
k=1

Λ
−1
k ζ k = Λn(u−Rn), n≥ 1,

where

Rn :=
n

∑
k=1

Qk

k−1

∏
i=1

Mi, Qn :=−ζ n/λn, n≥ 1.
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In view of (9), this implies the bound

ψ(u)≥ P
(

inf
n≥1

Sn < 0
)
≥ P

(
R > u), where R := sup

n≥1
Rn.

Next we note that, since R1 = Q1 and M1 > 0, one has

R = Q1∨ sup
n≥2

Rn = Q1∨
(

Q1 +M1 sup
n≥2

n

∑
k=2

Qk

k−1

∏
i=2

Mi

)
= Q1∨ (Q1 +M1R′) = Q1 +M1(R

′
)+,

where R′ := supn≥2 ∑
n
k=2 Qk ∏

k−1
i=2 Mi

d
= R is independent of (M1,Q1). Therefore

our R satisfies the random equation

R d
= Q+M(R)+,

where (M,Q) and R on the right-hand side are independent of each other. This re-
lation is exactly of the form (25), and we will now verify whether the conditions of
Lemma 4 are met when (A,B) = (M,Q), α = β .

First of all, it follows from Proposition 6.1 in [10] that R is a proper random
variable provided that E ln(1∨Q)< ∞. The latter will immediately follow from the
condition E|Q|β+δ <∞ of Lemma 4 that we need to verify. To demonstrate the latter
relation, note that

Q =−ζ

λ
=

ξ

λ
− ce−K(0)−Z(0)

∫
τ

0
eK(s)+Z(s)ds

=
ξ

λ
− c

∫
τ

0
exp
{
−
∫ s

0
(µ(u)−σ

2(u)/2)du−
∫ s

0
σ(u)dW (u)

}
ds. (26)

It is obvious from the elementary inequality |x + y|p ≤ (1 ∨ 2p−1)(|x|p + |y|p),
x,y, p > 0, that it suffices to show that the absolute moments of the order β + δ

are finite for both terms on the right-hand side. By independence, one has

E
∣∣∣∣ξλ
∣∣∣∣β+δ

= Eξ
β+δ Eλ

−(β+δ ) = Eξ
β+δ

φν(β +δ )< ∞

in view of Remark 2.
Next note that, due to our assumption about independence of (µ(·),σ(·),τ)

and W (·), one has
{
−
∫ s

0 σ(u)dW (u)}s≥0
d
= {W (Σ(s))

}
s≥0, where we set Σ(s) :=∫ s

0 σ2(u)du, s≥ 0. Therefore, putting W (t) := max0≤s≤t W (s), t ≥ 0, we get

max
0≤s≤τ

(
−
∫ s

0
σ(u)dW (u)

)
d
= max

0≤s≤τ
W (Σ(s)) =W (Σ(τ))≤W (σ2

τ).
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Now, setting κ(u) := σ2(u)/2− µ(u) and noting that κ(u) ≤ κ := σ
2/2− µ a.s.,

we get for the second term on the right-hand side of (26) that

E
(∫

τ

0
· · ·ds

)β+δ

≤ E
(

eW (σ2
τ)
∫

τ

0
eκsds

)β+δ

≤ E
(

eW (σ2
τ)

τeκ
+

τ

)β+δ

. (27)

Due to the reflection principle, for any a, t > 0,

EeaW (t) = 2E(eaW (t);W (t)> 0)< 2EeaW (t) = 2ea2t/2, t > 0,

so conditioning the last expectation in (27) on τ and using independence, we obtain
that it is less than

2Ee((β+δ )2σ
2/2+(β+δ )κ+)τ

τ
β+δ < ∞,

using assumption (13) and choosing δ > 0 small enough. Thus we showed that
E|Q|β+δ < ∞, which implies, in particular, that R is proper.

To verify the remaining assumptions of Lemma 4, we observe that condition
EMβ = 1 is met by Lemma 1 and that EMβ+δ < ∞ as explained in Remark 2. That
M = eν is absolutely continuous follows from the presence of the Itô integral in ν

and independence of W from the other participating random quantities. Thus it only
remains to verify that P(M > 1,Q > 0)> 0. Setting

V (t) :=
∫ t

0
(µ(u)−σ

2(u)/2)du+
∫ t

0
σ(u)dW (u), t ≥ 0,

and choosing a > 0 such that b := P(ξ > ac)> 0, the previous probability is clearly
equal to

P(V (τ)< 0,ζ < 0)≥ P
(

V (τ)< 0,c
∫

τ

0
eV (τ)−V (s)ds < ξ ,ac < ξ

)
≥ bP

(
V (τ)< 0,

∫
τ

0
eV (τ)−V (s)ds < a

)
≥ bP

(
V (τ)< 0,

∫
τ

0
e−V (s)ds < a

)
≥ bP

(
τe−V (τ) < a |V (τ)< 0

)
P(V (τ)< 0),

where we put V (t) := inf0≤s≤t V (s). Obviously, P(V (τ)< 0)> 0, and as−V (τ)> 0
on the event {V (τ) < 0} while a can be chosen arbitrary small, the product in the
last line of the displayed formula is positive, establishing that the last condition of
Lemma 4 is met as well. This completes the proof of Theorem 1. �
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3 Frolova’s exponent when coefficients µn(t) and σn(t) do not
depend on time

In this section we assume satisfied condition (15) and also that the components
(µn,σn), τn and Wn(·) of our quadruples (8) are jointly independent. Under these
assumptions, one has ν = −(µ −σ2/2)−σW (τ). Introducing the random vector
Θ := (µ,σ2/2), setting

u(q) := (−q,q(q+1)), q ∈ R,

and conditioning, we get

φν(q) = Eeq(−(µ−σ2/2)τ−σW (τ)) = Ee−q(µ−σ2/2)τ+q2σ2τ/2

= Eφτ(−q(µ−σ
2/2)+q2

σ
2/2) = Eφτ(〈u(q),Θ〉), (28)

where 〈·, ·〉 stands for the inner product in R2.
Note that our key condition EK > 0 for the existence of the Frolova exponent is

equivalent in the case under consideration to

E(µ−σ
2/2)> 0 (29)

(assuming that Eτ < ∞), which is a “mean version” of the condition 2µ/σ2−1 > 0
under which the asymptotics (5) was established in the case of constant deterministic
µ and σ in [24].

Assuming that the above condition is met, the case qτ = ∞ is trivial: it is clear
from Lemma 1 and (28) that β will then always exist. So we will only consider the
case where

qτ < ∞, φτ(qτ) = ∞. (30)

Note that the latter is a typical situation when qτ < ∞; this is so, for instance, for
gamma-distributed τ . It turns out that, in this situation, the desired β may or may
not exist depending on the distribution of Θ , .

Fig. 1 As q ↑ q+, the line Lq
approaches the set D.
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Introduce rays Lq := {(x,y) ∈ R×R+ : 〈u(q),(x,y)〉 = qτ}, q > 0. Clearly,
(x,y) ∈ Lq iff

y =
x

q+1
+

qτ

q(q+1)
, x≥−qτ

q
(31)

(the last inequality is equivalent to y ≥ 0). Denote by D ⊆ [µ,∞)× [0,σ2/2] the
support of Θ and put

q+ := inf{q > 0 : Lq∩D 6=∅}.

Note that, as q increases, the ray Lq “moves” to the right and “rotates” in the clock-
wise direction, and as D is bounded from the left and from the top, q+ is a finite
positive number (see Fig. 1: q+ is the value of q for which Lq first “touches” D).

Note that if q > q+ then P(〈u(q),Θ〉 > qτ) > 0, so that φν(q) = ∞ by (28). As
for q < q+ one clearly has P(〈u(q),Θ〉< qτ−ε) = 1 for some ε > 0, we get q < qν

(again by (28)). We conclude that q+ = qν .
Clearly, φν(qν) = ∞ is sufficient for the existence of the Frolova exponential un-

der the condition that Eν < 0. In view of our assumption (30), representation (28)
suggests that whether φν(qν) is infinite or not depends on how strongly the distri-
bution of Θ is concentrated in vicinity of the ray Lq+ . To capture this, we introduce
the random variable H by setting, for any θ+ ∈ Lq+ ,

H := 〈u(q+),θ+−Θ〉= qτ +q+µ−q+(q++1)σ2/2,

where the second equality was obtained choosing θ+ = θ0 := (−qτ/q+,0) ∈ Lq+ ,
and denote by FH its distribution function. We see that H ≥ 0 a.s. (as the point Θ

is below the ray Lq+ given by (31)) with q = q+, the value of H being equal to the
Euclidean length of the vector u(q+) times the distance from Θ to Lq+

Now, from (28),

φν(q) = Eφτ(〈u(q)−u(q+),Θ〉+ 〈u(q+),Θ −θ0〉+ 〈u(q+),θ0〉)
= Eφτ(qτ −H−〈u(q+)−u(q),Θ〉) = Eφτ(qτ −H− ε〈a(ε),Θ〉), (32)

where we first noted that u(q+)− u(q) = (q+− q)(−1,q+ + q+ 1) and then put
ε := q+−q, a(ε) := (−1,2q++1− ε)→ (−1,2q++1) as ε ↓ 0.

There is no monotone dependence on ε in the integrand on the right-hand side
on (32), so we need an argument establishing convergence of these expectations as
ε ↓ 0. Let D′′ := {θ = (x,y) ∈ D : y < x/(q++ 1)}. Clearly, 〈u(q+),θ〉 = −q+x+
q+(q++1)y < 0 for θ ∈ D′′, so that φτ(〈u(q+),θ〉)≤ 1 in that domain and hence

E(φτ(〈u(q),Θ〉);Θ ∈ D′′)→ E(φτ(qτ −H);Θ ∈ D′′), q ↑ q+,

by the dominated convergence theorem. Turning to D′ := D \D′′, one can easily
verify that there exist r± ∈R such that r− ≤ 〈a(ε),θ〉 ≤ r+ for all θ ∈D′, ε ∈ (0,1).
Since φτ is an increasing function, we get
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E(φτ(qτ −H− r+ε);Θ ∈ D′)≤ E(φτ(qτ −H− ε〈a(ε),Θ〉);Θ ∈ D′)

≤ E(φτ(qτ −H− r−ε);Θ ∈ D′).

Now we can apply the monotone convergence theorem to both lower and upper
bounds in the last displayed formula since the integrands in them have monotone
dependence on ε. We conclude that

φν(q)→
∫

∞

0
φτ(qτ −h)dFH(h), q ↑ q+.

Since clearly
∫

∞

δ
φτ(qτ−h)dFH(h)≤ φτ(qτ−δ )< ∞ for any δ > 0, we arrive at the

following result.

Theorem 2. Under the assumptions stated at the beginning of this section, assume
that (29) and (30) hold true. Then qν = q+ and, moreover, φν(qν) = ∞ iff∫

δ

0
φτ(qτ −h)dFH(h) = ∞

for some (and then for any) δ > 0.

Thus there must be significant presence of probability mass in vicinity of the
tangent to D line Lq+ to ensure that φν(qν) = ∞.

It is not hard to get closed-form expressions for φν in several tractable examples
in the special case of the Poisson arrival process with rate 1, which means that
φτ(q) = 1/(1− q), q < qτ := 1 (so that (30) is true). In one such example one
has P(Θ = (1/ j,1− 1/ j)) = j−p/ζ (p), j ≥ 1, for a fixed p ∈ N, where ζ is the
Euler–Riemann zeta function. In this case, q+ = (

√
5−1)/2 and D∩L1 = {(0,1)},

and it turns out that φν(q+) = ∞ iff p = 2, in obvious agreement with the claim
of Theorem 2. If, further, one assumes that Θ is uniformly distributed in a unit
square D with vertices at the points (i, j), i, j ∈ {0,1}, then again q+ = (

√
5−1)/2,

D∩ L1 consists of the single point (0,1) (the vertex of our D at which it touches
the line Lq+), and one can also derive a closed form expression for φν yielding
φν(q+)< ∞. If, however, we rotate the square in the anticlockwise direction around
the vertex (0,1) until its upper edge runs along the line Lq+ (with clearly the same
value of q+ as in the previous examples) then one would have φν(q+) = ∞, also
in agreement with Theorem 2. In the latter case, there is “too much probability” in
vicinity of Lq+ (the probability mass in the ε-neighbourhood of that line is � ε as
ε ↓ 0 compared to � ε2 in the former case).
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