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Abstract Relying on a perturbation technique of Markov semigroup, also known
as the parametrix method, we establish some asymptotic expansion for the Markov
semigroup generated by a skew diffusion process with respect to a small parameter.
Though the approach developed here is general, we focus on the case of short time
and small skew heat kernel expansions.

1 Introduction

The parametrix method introduced by Levi [18] in 1907 has been extensively used
to establish semi-explicit expansions of the fundamental solution of a variety of
partial differential equations. For a review on these subjects, we refer the reader
to [12]. It has also recently been revisited in a series of works [1, 7, 4] to provide
some probabilistic representation and integration by parts formula of the marginal
law of various processes as an alternative to standard Malliavin calculus techniques
or to establish the well-posedness in the weak sense of some degenerate stochastic
differential equations (SDEs for short) [8, 9].

The purpose of the present paper is to introduce the inexperienced reader to an
application of this method to some asymptotic expansions of skew diffusions. For
a general introduction to skew Brownian motion and its applications, we refer the
reader to [17]. For an application of the parametrix technique to skew diffusion for
the study of its transition density or a time discretization scheme, we refer the reader
to [15] and [6] respectively.
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While there have been several important works on the problem of density expan-
sions for diffusions with regular coefficients using different methods, see e.g. [21],
[2] or [3], to the best of our knowledge, asymptotic expansions for the transition
density of a skew diffusion have not been considered so far. For explicit asymptotic
expansions using this method in the case of regular diffusions, we refer the reader
to [14].

To motivate our results, we also present a financial application with a model
representing regime switching which has been recently discussed in [10]. The pa-
rameters that are considered to be small in this model are not the same as in our
main results but we will show the reader that the same technique applies. Clearly,
these techniques may be useful in other models as well and should have broad ap-
plications in pricing and risk management.

Our approach in this article is more didactical than general so that we have chosen
some simplified models in order for the reader to grasp the ideas quickly. In this
sense, some technical details are deliberately omitted by referring the reader to the
corresponding article.

2 Asymptotic expansions of skew diffusions

In this section we study a one-dimensional Markov semigroup with singular coeffi-
cients for which we derive an asymptotic expansion with respect to a small parame-
ter ε . We consider a skew diffusion process, that is the unique strong solution of the
following one dimensional SDE with dynamics

Xε
t = x+

∫ t

0
bε(Xε

s )ds+
∫ t

0
σε(Xε

s )dWs +αε
`L0

t (X
ε), ` ∈ R+, (1)

where (α,ε) ∈ (−1,1)× [0,1], W = (Wt)t≥0 is a one-dimensional standard Brown-
ian motion and L0

t (X
ε) is the symmetric local time at the origin accumulated by Xε

up to time t.
Note that for σ ≡ 1, b≡ 0, ε = 1 and `= 0 the process Xε is known as the skew

Brownian motion. We refer the reader to [17] for a survey on this process (see also
Section 5 for some basic information). When b ≡ 0 and σ ≡ 1, [20] constructed a
semigroup, closely related to the process (1), for which the associated infinitesimal
generator has a Dirac mass as drift part. Additionally, he proved that Pε

t f (x) =
E[ f (Xε

t )] generates a Feller semigroup. Actually, his approach is more general since
he considers a multi-dimensional framework and the singular drift is the Dirac mass
of a smooth surface.

In order to use the parametrix method for the expansion, we need to first gather
some regularity properties for the law of Xε

t .
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Regularity properties: Let T > 0. Assuming that for any ε ∈ [0,1], bε is con-
tinuous1 and σε is bounded, uniformly elliptic and Hölder continuous, the random
variable Xε

t given by the unique weak solution at time t > 0 of the SDE (1) admits a
density pε

t (x,y) satisfying some Gaussian upper bounds as well as the Markov prop-
erty2. We refer the reader to Kohatsu-Higa et al. [15]. Notably, the authors proved
that for all t ∈ (0,T ], y 7→ pε

t (x,y) is not continuous at 0 but admits left and right
limits (as it is the case for the standard skew Brownian motion) and that there exist
C > 1 and c > 1 that may depend on ε such that

∀(x,y) ∈ R×R\{0}, pε
t (x,y)≤Cgcε2t(y− x), (2)

where gc(y) := 1/(2πc)1/2 exp(−y2/(2c)).
In order to carry out the expansion, we introduce the time-homogeneous semi-

group (Pε
t )t≥0 induced by the SDE (1) defined for any bounded and measurable

function f by Pε
t f (x) = E[ f (Xε

t )]. We will frequently use the following boundary
condition which is called the “transmission condition” due to its meaning as inter-
action at the boundary. Given a function f : R→ R such that f ′(0+) and f ′(0−)
exist, we say that f satisfies the transmission condition at 0 if

(1+αε
`) f ′(0+) = (1−αε

`) f ′(0−). (3)

We are interested in obtaining the asymptotic expansion of pε
t (x,y) in powers of

ε . Importantly, by a weak uniqueness argument, we remark that the case bε(x) =
ε2b(x), σε(x) = εσ(x) and ` = 0 corresponds to the short time asymptotics of the
density of Xt given by the unique weak solution taken at time t of the following SDE

Xt = x+
∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs +αL0

t (X). (4)

Indeed, it is sufficient to remark that by weak uniqueness {Xε2t ; t ≥ 0} is equal in
law to {Xε

t ; t ≥ 0}. Hence, the case ` > 0 corresponds to a skew parameter α close
to zero and will be referred as to the small skew case.

Our main results are established in Sections 2.1 and 4. The first one is The-
orem 2.1 where we establish an asymptotic expansion of the transition density
y 7→ pε

t (x,y) with respect to the skew parameter. Not only such expansion appears
to be new and of independent interest but also it is the first step towards our second
main result, developed in Section 4, where the first order expansion of y 7→ pε

t (x,y)
(in the case bε ≡ ε2b, σε = εσ ), which notably includes the short time asymptotic,
is established.

1 In fact, a deeper analysis of the proofs in [15] results in the conclusion that this assumption is
only used in Proposition 3.2 which is not required in order to obtain Proposition 5.3. In fact, this
result can be obtained using an equivalent proof which uses the Itô-Tanaka formula instead of the
generator L (see the proof of Lemma 1). Therefore one may assume that b is a measurable and
bounded function. For a quick review of the argument, we refer to the Appendix.
2 The proof of this fact in [15] can also be applied under the assumption that b is bounded and
measurable.
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2.1 Small skew expansion: a representation formula for the
transition density

The first step consists in defining an approximation process that does not involve
the local time component of Xε . For some prescribed finite time horizon T > 0, we
want to expand (Pε

t )t∈[0,T ] around the semigroup (P̄ε
t )t∈[0,T ] associated to the unique

weak solution of the following SDE with dynamics

X̄ε
t = x+

∫ t

0
bε(X̄ε

s )ds+
∫ t

0
σε(X̄ε

s )dWs. (5)

We will work under the following mild assumptions on the coefficients:

(R) For any ε ∈ [0,1], the measurable functions bε : R→ R and σε : R→ R are
bounded uniformly in ε . Moreover, aε = σ2

ε is η-Hölder continuous for some η ∈
(0,1] uniformly in ε .

(UE) For any ε ∈ [0,1], σε(x) = σ0 + εσ(x) for some constant σ0 ≥ 0 and where
σ is a positive function such that there exist positive constants a,a satisfying a ≤
a(x) = σ2(x)≤ a for any x ∈ R.

Since σε is continuous and uniformly elliptic, without loss of generality, we as-
sume that σε is positive. Under (R) and (UE), it is known that the transition density
associated to (P̄ε

t )t≥0 exists for ε ∈ [0,1]. We denote it by (t,x,y) 7→ p̄ε
t (x,y). Ac-

cording to classical results using the parametrix method (see e.g. Chapter 1, Section
6 in [5]3), under (R) and (UE), it is known that p̄ε satisfies the following properties:
for any (t,x,y) ∈ (0,T )×R×R,

p̄ε
t (x,y) = p̄ε,1

t (x,y)+ p̄ε,2
t (x,y),

where

p̄ε,1
t (x,y) =

1√
2πtσε(y)

exp
(
− (y−bε(y)t− x)2

2σ2
ε (y)t

)
, (6)

and p̄ε,2
t (x,y) satisfies the following Gaussian type estimates for r = 0 and r = 1

|∂ r
x p̄ε,2

t (x,y)| ≤ Kε t−
(1+r−η)

2 exp
(
−Cε

(y− x)2

ε2t

)
, (7)

for some positive constants Cε and Kε . Note that p̄ε,1
t (x,y) and p̄ε,2

t (x,y) are not
density functions. Moreover, it holds

|∂x p̄ε
t (x,y)| ≤ Kε t−1 exp

(
−Cε

(y− x)2

ε2t

)
, (8)

3 Although in this reference, the author assumes that the drift coefficient b is Hölder continuous, a
careful analysis of the arguments reveals that this can be replaced by the weaker condition of being
bounded and measurable. For a sketch of the argument in a particular case, see the Appendix.
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and from (6) and (7), we easily obtain for (y, t) ∈ R× (0,T ],

|∂x p̄ε,1
t (y,y)|+ |∂x p̄ε,2

t (y,y)| ≤ Kε t−1+ η

2 . (9)

Note also that if σ0 > 0 then there exist M > 1 such that for any ε ∈ [0,1],

M−1 ≤ Kε ∨
Cε

ε2 ≤M. (10)

An important point has to be noted at this step. Since x 7→ p̄ε
t (x,y) is continuously

differentiable under (R) and (UE), P̄ε
t f does not satisfy the transmission condition

(3). This is due to the fact that the dynamics (5) does not contain a local time term.
This important observation will characterize the first order expansion of Pε

around P̄ε that represents a first step towards our main results. In order to simplify
the writing of our next result, we introduce the following operators

∆
±
m f =

f (m+)± f (m−)
2

.

Lemma 1. Assume that (UE) and (R) are satisfied. For all f ∈ C ∞
c (R) and all

(t,x) ∈ [0,T ]×R, it holds

Pε
t f (x) = P̄ε

t f (x)+αaε(0)ε`
∫ t

0

∫
R

∆
+
0 pε

s1
(x, ·)∂x p̄ε

t−s1
(0,y) f (y)dyds1.

By a monotone class argument, one also has the following representation for
(t,x,y) ∈ (0,T ]×R× (R\{0}),

pε
t (x,y) = p̄ε

t (x,y)+αaε(0)ε`
∫ t

0
∆
+
0 pε

s1
(x, ·)∂x p̄ε

t−s1
(0,y)ds1. (11)

Proof. We apply the Itô-Tanaka formula to the process (Xε
s )s∈[0,t] with the map

[0, t]×R 3 (s,x) 7→ P̄ε
t−s f (x) (see e.g. [11]) and take expectations to obtain:

E[ f (Xε
t )] = P̄ε

t f (x)+
1
2

αε
`E
[∫ t

0
∂xP̄ε

t−s f (0)dL0
s (X

ε)

]
.

Therefore the result follows from the space time formula for local times and the
properties stated for the transition density of Xε . For more details, we apply formula
(7.3) in Section 3.7 of [13] and remark that the process 2(Λt(0,ω) +Λt(0−,ω))
therein corresponds to L0

t (X
ε) in our situation.

For the density representation, one has to use the fact that the formula obtained
can be extended to measurable and bounded functions whose support does not con-
tain 0 and from here the density representation follows. �

In the sense of operators which generate the corresponding diffusions we see that
the following expansion is satisfied in a generalized sense:
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L ε =L̄ ε + ε
`L 1,ε ,

L 1,ε =αaε(0)δ0∂x.

where L ε and L̄ ε stand for the infinitesimal generators associated to Pε and P̄ε .
Our next goal in order to obtain an expansion for pε

t is to iterate the above iden-
tity. This gives our first main result.

Theorem 2.1 Let T > 0. Under (UE) and (R), for all (ε,α) ∈ [0,1]× (−1,1), the
transition density associated to the unique weak solution to the SDE (1) admits the
following representation for any (t,x,y) ∈ (0,T ]×R× (R\{0}),

pε
t (x,y) = p̄ε

t (x,y)+ ∑
p≥1

(αaε(0)ε`)pIε
p(t,x,y), (12)

with

Iε
p(t,x,y) :=

∫
∆p(t)

p−1

∏
k=1

∂x p̄ε
sk−sk+1

(0,0)p̄ε
sp(x,0)∂x p̄ε

t−s1
(0,y)dsp, p≥ 1,

and the convention s0 = t with ∆p(t) := {(s1, ....,sp);0 < sp < ... < s1 < t} and
dsp = ds1...dsp.

Proof. In order to iterate formula (11), one needs to derive a similar formula for
∆
+
0 pε

s1
(x, ·). As we want to take limits in (11), we need to prove the uniform inte-

grability of the integrands. We note here that the estimate in (9) can not be directly
used here because formula (11) is not valid for y = 0.

In order to obtain the uniform integrability, we remark that (11) implies that for
any h ∈ (0,1]

pε
t (x,h)+ pε

t (x,−h)
2

=
p̄ε

t (x,h)+ p0
t (x,−h)

2

+αaε(0)ε`
∫ t

0
∆
+
0 pε

s1
(x, ·)

∂x p̄ε
t−s1

(0,h) +∂x p̄ε
t−s1

(0,−h)
2

ds1.

Moreover, from (6) and (7), one has

∂x p̄ε
t−s1

(0,h) +∂x p̄ε
t−s1

(0,−h)
2

=
1
2

{
h−bε(h)(t− s1)

σ2
ε (h)(t− s1)

− h+bε(−h)(t− s1)

σ2
ε (−h)(t− s1)

}
p̄ε,1

t−s1
(0,h)

+
h+bε(−h)(t− s1)

2σ2
ε (−h)(t− s1)

(p̄ε,1
t−s1

(0,h)− p̄ε,1
t−s1

(0,−h))

+
∂x p̄ε,2

t−s1
(0,h) +∂x p̄ε,2

t−s1
(0,−h)

2
=:A1 +A2 +A3.
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From (7), it is clear that |A3| ≤ Kε(t − s1)
−1+ η

2 for some Kε > 0 independent
of h. Now, from (UE), (R) and standard computations that we omit, on the set{

s1 ∈ [0, t] : h < (t− s1)
θ
}

, with θ chosen so that 1
1+η

< 2θ < 1, we obtain

|A1|+ |A2| ≤ Kε

{
(t− s1)

− 1
2 +(t− s1)

− 3
2+θ(1+η)

}
.

On the set
{

s1 ∈ [0, t] : h≥ (t− s1)
θ
}

, from (8) and θ < 1/2, one gets

|∂x p̄ε
t−s1

(0,h)| + |∂x p̄ε
t−s1

(0,−h)| ≤Kε

1
(t− s1)

exp
(
−Cε

h2

ε2(t− s1)

)
≤Kε

1
(t− s1)

exp
(
−Cε

1
ε2(t− s1)1−2θ

)
.

Letting h ↓ 0, it then follows from the dominated convergence and the continuity
at 0 of y 7→ p̄ε

t (0,y) and y 7→ ∂x p̄ε
t (0,y) that

∆
+
0 pε

t (x, .) = p̄ε
t (x,0)+αaε(0)ε`

∫ t

0
∆
+
0 pε

s1
(x, .)∂x p̄ε

t−s1
(0,0)ds1. (13)

Moreover, it follows from estimates (2) and (9) that

s1 7→ ∆
+
0 pε

s1
(x, .)∂x p̄ε

t−s1
(0,0) ∈ L1([0, t]).

Hence, one may iterate (13) so that

∆
+
0 pε

t (x, .) = p̄ε
t (x,0)+ ∑

p≥1
(αaε(0)ε`)pIε

p(t,x,0). (14)

Indeed, it follows from (8) and (9) that there exists Kε such that for any positive
integer p

(αaε(0)ε`)p ∣∣Iε
p(t,x,0)

∣∣
≤Kε(αaε(0)ε`Kε)

p
∫

∆p(t)

p−1

∏
k=1

(sk− sk+1)
−1+ η

2 s
− 1

2
p (t− s1)

−1+ η

2 dsp

=:
∫

∆p(t)
Gp(sp)dsp.

The function Gp(sp) defined above satisfies for Cε
1 := αε`aε(0)Kε t

η

2 and any
r > 0
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∑
p≥1

∫
∆p(t)

dspGp(sp) (15)

=Kε t−
1+η

2 ∑
p≥1

(Cε
1)

p
p−1

∏
k=0

B
(

1+ kη

2
,

η

2

)
≤Kε t−

1+η

2 ∑
p≥1

(
Cε

1Γ (
η

2
)
)p 1

Γ ( 1+pη

2 )
< ∞.

where we have used the inequality xre−x ≤Cr, x > 0, for the last inequality. Here, B
and Γ denote the Beta and Gamma functions respectively. From this last estimate,
we deduce that the expansion (14) is satisfied. We then plug (14) into (13) and use
Fubini’s theorem in order to derive the small skew expansion (12). �

As an illustration of the theorem, we consider the case of the skew Brownian
motion that is we set σ0 = 0, σ ≡ 1, b ≡ 0. Hence, p̄ε is the fundamental solu-
tion associated to the operator 1

2 ε2∂ 2
x and is given by p̄ε

t (x,y) = gε2t(y− x) so that
Theorem 2.1 asserts that for all (t,x,y) ∈ (0,T ]×R× (R\{0})

pε
t (x,y) = p̄ε

t (x,y)+αε
2+`
∫ t

0
ds p̄ε

s (x,0)∂x p̄ε
t−s(0,y). (16)

This is one possible expression for the transition density of the skew Brownian
motion, see e.g. Lejay [17]. Hence, Theorem 2.1 appears as an extension of the
representation formula (16) to the more general class of skew diffusions.

Another application consists of measuring the distance between models.

Corollary 1. For any t ∈ (0,T ], the total variation distance between the laws of Xε
t

and X̄ε
t can be bounded by∫

|pε
t (x,y)− p̄ε

t (x,y)|dy≤ Kε αaε(0)ε`,

for some constant Kε :=Kε(T ), uniformly bounded in ε ∈ [0,1] such that T 7→Kε(T )
is non-decreasing.

Proof. Note that

(αaε(0)ε`)p ∣∣Iε
p(t,x,y)

∣∣
≤Kε(αaε(0)ε`Kε)

p
∫

∆p(t)

p−1

∏
k=1

(sk− sk+1)
−1+ η

2 s
− 1

2
p (t− s1)

−1 exp
(
−Cε

y2

ε2(t− s1)

)
dsp

so that

(αaε(0)ε`)p
∫
R

∣∣Iε
p(t,x,y)

∣∣dy

≤εC−1/2
ε (αaε(0)ε`)pK p+1

ε

∫
∆p(t)

dsp

p−1

∏
k=1

(sk− sk+1)
−1+ η

2 s
− 1

2
p (t− s1)

−1/2.
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Now the same line of calculations using the Beta function and (10) yields the result.

3 Application to a financial model

We will consider the following stochastic differential equation as an extension of the
Black-Scholes model where the local volatility is given by a simple regime switch-
ing in the following sense

St = S0 +
∫ t

0
σ(Ss)SsdBs, (17)

with

σ(s) = σ11[0,s1)(s)+σ21[s1,∞)(s).

For more background on the financial meaning of the model, we refer the reader to
[10]. In order to transform this model into a skew diffusion, we let F : R→R be the
continuous increasing function defined by

F(y) =
y

σ1
1(−∞,s∗1)

(y)+
(

y
σ2

+ c2

)
1[s∗1,∞)(y),

c2 =−
s∗1
σ2

+
s∗1
σ1

,

s∗1 = exp(s1).

Using Itô’s formula, we have

ln(St) = ln(S0)+
∫ t

0

(
σ(Su)dBu−

σ2(Su)

2
du
)
.

Furthermore, applying the Itô-Tanaka formula for Xt = F(ln(St)), we obtain

Xt = X0 +Bt −
∫ t

0

σ̃(Xu)

2
du+∆

−
a1
(σ̃−1)La1

t (ln(S)).

Here, X0 = F(ln(S0)), a1 := s∗1/σ1 and

σ̃(x) := σ(eF−1(x)) = σ11(−∞,a1)(x)+σ21[a1,∞)(x).

Similarly, we apply the Itô-Tanaka formula to g(ln(St)) := |F(ln(St))− a1|. This
gives for ∆+

a1
(σ̃−1) := 2−1(σ−1

2 +σ
−1
1 ),

g(ln(St)) = g(ln(S0))+
∫ t

0
g′(ln(Su))d ln(Su)+∆

+
a1
(σ̃−1)La1

t (ln(S)). (18)
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Furthermore,∫ t

0
sgn(Xu−a1)dXu =

∫ t

0
sgn(F(ln(Su))−a1)

(
dBu−

σ̃(Xu)

2
du
)

=
∫ t

0
sgn(F(ln(Su))−a1)σ

−1(Xu)d ln(Su)

=
∫ t

0
g′(ln(Su))d ln(Su). (19)

Recall that an application of the Itô-Tanaka formula to |Xt −a1| gives

La1
t (X) = |Xt −a1|− |X0−a1|−

∫ t

0
sgn(Xu−a1)dXu.

Comparing the above results in (18) and (19), we get

∆
+
a1
(σ̃−1)La1

t (ln(S)) = La1
t (X).

This gives that

Xt = X0 +Bt −
∫ t

0

σ̃(Xu)

2
du+α1La1

t (X),

with α1 :=
∆−a1

(σ̃−1)

∆
+
a1 (σ̃

−1)
∈ (−1,1) for ∆−a1

(σ̃−1) := 2−1(σ−1
2 −σ

−1
1 ).

Using the technique exposed in the previous section, we can now study an ex-
pansion of this model with ε = 2 σ2−σ1

σ2+σ1
> 0, α =− 1

2 , `= 1. In this setting, we can
set-up

bε(x) :=σ̃(x) = σ1 +
ε

2
(σ2 +σ1)1[a1,∞)(x)

aε(x) =σ0 = 1.

There will be a slight difference in the definition of X̄ε which will be given by

X̄t = X0 +Bt −
σ1

2
t.

Besides the above change the hypotheses (R) and (UE) are clearly satisfied. We
now mention the main modifications to the proof of Theorem 2.1. First, in Lemma
1, we obtain instead that for all f ∈ C ∞

c (R), for any x ∈ R, one has

Pε
t f (x) =P̄t f (x)+

∫ t

0

∫
R2

pε
s (x,x1)(bε −σ1)(x1)∂x p̄t−s(x1,y) f (y)dx1dyds

+α1ε

∫ t

0

∫
R

∆
+
a1

pε
s (x, ·)∂x p̄t−s(a1,y) f (y)dyds. (20)
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Here p̄t(x,y) = gt(y− x+ σ1
2 t) is the density of X̄t . The above shows that the argu-

ment can be applied using the “error operator ” L 1,ε given by

L 1,ε f (x) = ε

(
σ2 +σ1

2
1[a1,∞)(x)+α1δa1(x)

)
f ′(x).

The analysis of integrability of multiple integrals and the estimates in (6)-(9) are
straightforward because the density of X̄t can be explicitly written and in fact the
bounds can be improved in comparison with (7)∼(10). This is due to the fact that the
diffusion coefficient is constant and previously it was a general Hölder continuous
function.

Continuing with the argument, instead of Iε
p(t,x,y) in (12), we obtain

P̄spL
1,ε P̄sp−1−sp · · · P̄s1−s2L

1,ε P̄t−s1(δy(.))(x)

=
∫
Rp

dx1...dxp p̄sp(x,xp)((bε(x1)−σ1)∂x p̄t−s1(x1,y)+α1εδa1(x1)∂x p̄t−s1(x1,y))

×
p−1

∏
k=1

(
(bε(xk+1)−σ1)∂x p̄sk−sk+1(xk+1,xk)+α1εδa1(xk+1)∂x p̄sk−sk+1(xk+1,xk)

)
.

In the present case the partial derivatives are explicit. In particular,

|∂x p̄t(x,y)| ≤
C√

t
p̄t(x,y),

|∂x p̄t(x,x)| ≤
C√

t
.

Therefore one can easily conclude an equivalent result to Corollary 1 so that for any
bounded payoff function f , it holds∣∣E[ f (St)]−E[ f (S̃t)]

∣∣≤C|σ2−σ1|.

Here S̃ corresponds to the Black-Scholes model with volatility σ1. By inspecting the
proof, one can see that with a little bit more effort, one can achieve a similar result
for linearly growing test functions f . Furthermore as p̄ can be expressed explicitly
in the present case higher order expansions can be obtained.

A similar argument could be achieved for a more general class of regime switch-
ing models such as the following extension of the Black-Scholes model where the
volatility is subjected to n+1 regime switching models in the following sense

St = S0 +
∫ t

0
σ(Ss)SsdBs, (21)

where σ is defined by
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σ(s) =
n+1

∑
i=1

σi1[si−1,si)(s).

Here σ1, . . . ,σn+1 ∈ R+ and 0 = s0 < s1 < · · ·< sn < sn+1 = ∞.
Rather than continuing on this path, we would like to present how to compute

the full expansion of the density pε . First note that the first term in (20) gives as the
lowest order term of the expansion

P̄spL
1,ε P̄sp−1−sp · · · P̄s1−s2L

1,ε P̄t−s1(δy(.))(x) =ε
pAp(sp, ...,s1).

Here, for b̃(x) := σ1+σ2
2 1[a1,∞)(x)

Ap(sp, ...,s1) :=∫
Rp

dx1...dxp p̄sp(x,xp)
(
b̃(x1)∂x p̄t−s1(x1,y)+α1δa1(x1)∂x p̄t−s1(x1,y)

)
×

p−1

∏
k=1

(
b̃(xk+1)∂x p̄sk−sk+1(xk+1,xk)+α1δa1(xk+1)∂x p̄sk−sk+1(xk+1,xk)

)
.

From here one has the expansion

pε
t (x,y) = p̄t(x,y)+

∞

∑
p=1

ε
p
∫

∆p(t)
dsp Ap(sp, ...,s1).

The full expansion for the density of St can be easily achieved by a change of vari-
ables formula. In the next section, we will return to our main problem which is
slightly more complex as the approximating densities also depend on ε .

4 Asymptotics of the density p̄ε

Now we return to the general case studied in Theorem 2.1 and note that we have
reduced the problem of the expansion of pε to the expansion of the density of X̄ε

t
which is a one dimensional diffusion. In order to carry out this expansion, we can
use classical techniques to expand its density in the case4 σ0 = 0. In fact, we will
use the Lamperti transformation as follows:

F(x) :=
∫ x

0

1
σ(y)

dy

Note that this function is well defined due to hypothesis (UE). Then a combination
of Itô’s formula and the Girsanov measure transformation under hypothesis (R),
gives the following expression with Zε

t := F(x)+ εWt :

4 The case σ0 > 0 can also be achieved with further computational effort.
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E[ f (X̄ε
t )] =E

[
f (F−1(Zε

t ))M
ε
t
]

(22)

b̄ε(x) :=− 1
2

σ
′(F−1(x))+ ε

−2 bε

σ
(F−1(x))

Mε
t :=exp

(
ε

∫ t

0
b̄ε(Zε

s )dWs−
ε2

2

∫ t

0
b̄2

ε(Z
ε
s )ds

)
.

Using the explicit density of F(x)+εWt and the fact that {Ws;s∈ [0, t]} conditioned
to Wt = y has the law of a Brownian bridge, we obtain :

p̄ε
t (x,y) =

gε2t(F(x),F(y))
σ(y)

E
[

exp
(

ε

∫ t

0
b̄ε(Bx,y

s )dBx,y
s −

ε2

2

∫ t

0
b̄2

ε(B
x,y
s )ds

)]
.

Here Bx,y
s represents a Brownian bridge with variance ε2 at time s, starting at F(x)

and arriving at F(y) at time t. From now on, we will assume the following hypoth-
esis:

(R’) The measurable functions b̄ε : R→ R are bounded uniformly in ε .

Therefore in order to obtain an expansion for the above expectation, one may just use
the Taylor expansion for the exponential function and the following representation
for the Brownian bridge (see Section 5.6.B in [13])

Bx,y
s =Fs,t(x,y)+ ε(t− s)

∫ s

0

dWu

t−u
,

Fs,t(x,y) :=F(x)
(

1− s
t

)
+F(y)

s
t
.

As the proofs on the order of the residues are cumbersome, from now on we only
give heuristic expansions so that the way calculations are performed is clear.

For example, the first term in the expansion requires the computation of

E
[

ε

∫ t

0
b̄ε(Bx,y

s )dBx,y
s

]
= E

[
ε

∫ t

0
b̄ε(Bx,y

s )

(
∂sFs,t(x,y)− ε

∫ s

0

dWu

t−u

)
ds
]
. (23)

Further calculations will require explicit values for the coefficient functions bε and
σ but it should be clear that the only underlying law needed for this calculation is the
one related to the Brownian motion W . For example, assume that one may expand
b̄ε(B

x,y
s ) as follows:

b̄ε(Bx,y
s )≈b̄ε(Fs,t(x,y))+ b̄′ε(Fs,t(x,y))(t− s)ε

∫ s

0

dWu

t−u

+
1
2

b̄′′ε (Fs,t(x,y))(t− s)2
ε

2
(∫ s

0

dWu

t−u

)2

.

Using the above expansion in (23), one obtains:
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E
[

ε

∫ t

0
b̄ε(Bx,y

s )dBx,y
s

]
≈ε

∫ t

0
b̄ε(Fs,t(x,y))∂sFs,t(x,y)ds− ε

3
∫ t

0
b̄′ε(Fs,t(x,y))

s
t
ds

+
ε3

2

∫ t

0
b̄ε b̄′′ε (Fs,t(x,y))(t− s)2

∂sFs,t(x,y)ds.

Putting the above expansions together, one obtains:

p̄ε
t (x,y)≈

gε2t(F(x),F(y))
σ(y)

(24)

×
(

1+ ε

∫ t

0
b̄ε(Fs,t(x,y))∂sFs,t(x,y)ds− ε2

2

∫ t

0
b̄2

ε(Fs,t(x,y))ds
)

=: B0(ε). (25)

This gives the expansion for the first term of the main result in Theorem 2.1. For the
following term, we see that one also needs an expansion for the derivative ∂x p̄ε

t (x,y).
In order to do this, we take f = δy in (22) and differentiate with respect to x. This

gives:

∂x p̄ε
t (x,y) =

σ(y)
σ(x)

E
[
δ
′
y(X̄

ε
t )M

ε
t
]
+σ(x)−1E [δy(X̄ε

t )M
ε
t Y ε

t ] (26)

Y ε
t :=ε

(∫ t

0
b̄′ε(F(x)+ εWs)dWs− ε

∫ t

0
b̄ε b̄′ε(F(x)+ εWs)ds

)
.

The second term in (26) can be treated as we did in the expansion of p̄ε . For the
first term, we need to use the integration by parts formula of Malliavin Calculus.
Without going into much detail into this theory5, let us just state the result:

E
[
δ
′
y(X̄

ε
t )M

ε
t
]
=(σ(y)εt)−1E

[
δy(X̄ε

t )M
ε
t

(
Wt − ε

∫ t

0

(
b̄ε(Zε

s )ds+ sdY ε
s
))]

=:(σ(y)2
εt)−1gε2t(F(x),F(y))A1(t).

The above expression can now be expanded as we did previously using the Brownian
bridge Bx,y. The explicit expansion of A1(t) is performed in Section 6.

These are the essential mathematical elements required in order to obtain the ex-
pansions. The rest of the calculations, which are briefly explained in the Appendix,
require careful attention as there are many terms. We refer the reader to Appendix
2 for the explicit but long expressions. Taking into account the calculations in the
Appendix 2, we obtain the following result:

Result Let Xε be the unique solution of (1) with `≥ 1 and (t,x,y) ∈ (0,T ]×R×
(R\{0}). Assume the hypotheses (UE), (R) and (R’). Furthermore, assume that
b̄ε ∈C2 and that ‖b̄(i)ε ‖∞ ≤C, i = 1,2. Then, it holds

pε
t (x,y)≈ B0(ε)+αε

`
(
σ(y)−1gε2t(|F(x)|, |F(y)|)+ εB1 + ε

2B2
)
.

5 We refer the interested reader to [19] for definitions and notation.
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We quote the above statement as a result and not a theorem because proving
error rates is a technical and cumbersome argument which we have avoided here.
In particular, the error rate seems to be bounded by ε3gε2t(F(x),F(y)). In the case
that b̄ε is not differentiable but explicit as in Section 3, a careful analysis about the
expansion of Mε

t is needed. We do not develop these issues here.

5 Appendix 1: The parametrix method applied to a skew
diffusion

In this section, we give a brief and sketchy argument to show what is claimed in
footnote 3. In this sense, it may be easier for a beginner as we will not deal with
technicalities.

Our goal is to prove the existence and some regularity estimates for the density
of the random variable Xε

t in (1). In order to simplify notation, we will just explain
how to obtain properties of the law of

Xt = x+
∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs +αLm

t (X).

Recall that we are assuming that b is bounded and measurable and σ is Hölder
continuous and bounded.

The approximation will be based on the skew Brownian motion with α ∈ (−1,1)
and m ∈ R which is the unique solution of the equation

Xα
t = x+ σ̄Wt +αLm

t (X
α).

for some well-chosen σ̄ . Its density is given explicitly by

pα
t (x,y) :=gtσ̄2(y− x)+ sgn(y−m)αgtσ̄2(|y−m|+ |x−m|)

gt(y) :=
1√
2πt

exp
(
−y2

2t

)
.

Note that this density is in general discontinuous at y = m.
We will be using as the parametrix operator, the following linear operator which

is well defined for any bounded measurable function f :

P̄t f (x) =
∫
R

f (y)p̄t(x,y)dy

p̄t(x,y) :=gtσ2(y)(y− x)+ sgn(y−m)αgtσ2(y)(|y−m|+ |x−m|).

Note that y 7→ p̄t(x,y) is not a density but P̄t f is differentiable w.r.t. x with a second
generalized derivative which satisfies the transmission condition (3) with ε = 1 for
any bounded measurable function f : R→ R.
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From these properties, we see that the Itô-Tanaka formula can be applied (see e.g.
formula 2.5 in [11]) to P̄T−t f (Xt), t ∈ [0,T ]. This gives after explicit calculations 6

E[ f (XT )]− P̄T f (x)

=
∫ T

0
E
[
(∂sP̄T−s f )(Xs)+b(Xs)∂xP̄T−s f (Xs)+

1
2

σ
2(Xs)∂

2
x P̄T−s f (Xs)1(Xs 6=m)

]
ds

=
∫ T

0
E
[

b(Xs)∂xP̄T−s f (Xs)+

(
∂sP̄T−s f +

1
2

σ
2
∂

2
x P̄T−s f

)
(Xs)1(Xs 6=m)

]
ds.

Iterating the above expression one can obtain a semi-explicit expansion of the form:

E[ f (XT )] =P̄T f (x)+
∞

∑
p=1

∫
∆p

P̄spQsp−1−sp ...QT−s1 f (x)ds1...dsp (27)

Qt f (x) :=b(x)∂xP̄t f (x)+
(
−∂t P̄t f +

1
2

σ
2
∂

2
x P̄t f

)
(x)1(x 6=m)

∆p(T ) :={(s1, ....,sp);0 < sp < ... < s1 < T}.

Clearly, for the above expansion to be valid we need to prove convergence properties
for the above infinite sum. Direct calculations using the definition of P̄ and the
assumptions on b and σ give (see (29) to guess why the estimate below is correct)

‖Qt f‖∞ ≤
C

t(1−η/2)∧(1/2) ,

where η is the Hölder exponent of σ2. Therefore iterative integration over the sim-
plex7 ∆p gives that the infinite sum in (27) is absolutely convergent.

As this formula is valid for all bounded and measurable functions f : R→R, this
result also gives an expression for the density of XT which can then be differentiated
term by term in order to obtain the claimed properties. In fact, the density pt(x,y)
of Xt can be written as in the following expansion

pt(x,y) = p̄t(x,y)+
∞

∑
p=1

∫
∆p

P̄spQsp−1−sp ...QT−s1δy(x)ds1...dsp. (28)

We remark here that

Qsδy(x) = b(x)∂x p̄t(x,y)+
1
2
(σ2(y)−σ

2(x))∂ 2
x p̄t(x,y)1(x 6=m). (29)

From (28), one can easily deduce that pt(x,m±) exist. Moreover, by direct differen-
tiation one also obtains for x 6= m

6 Note that
∫ T

0 1(Xs=m)ds = 0 due to the time-space formula for semimartingales. For more details,
see formula (7.3) in Section 3.7 of [13].
7 This requires the use of the Beta function.
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∂x pt(x,y) = ∂x p̄t(x,y)+
∞

∑
p=1

∫
∆p

∫
∂x p̄sp(x,z)Qsp−1−sp ...QT−s1δy(z)dzds1...dsp.

This gives the existence of the derivative ∂x pt(x,±m) and Gaussian type upper esti-
mates by using the inequality xpe−cx2 ≤C(p,c) for x ≥ 0. For a probabilistic inter-
pretation of a variation of this methodology, we refer the reader to [16].

6 Appendix 2: Explicit calculations for the expansion of p̄ε and
∂x p̄ε

In this section, we compute the explicit expressions for the expansion of pε up to
order ε2gε2t .

The argument has already been explained in Section 4. The application of that
argument gives (24).

Now, we need to expand ∂x p̄ε
t (x,y). This is done through the expansion of the

two terms appearing in the right-hand side of (26). Let us start with the simplest of
the two which is the second term. To expand this term one uses the same technique
as in the above expansion. That is,

E [δy(X̄ε
t )M

ε
t Y ε

t ]≈ε
gε2t(F(x),F(y))

σ(y)

(
E
[∫ t

0
b̄′ε(B

x,y
s )dBx,y

s − ε

∫ t

0
b̄ε b̄′ε(B

x,y
s )ds

]

+ εE
[∫ t

0
b̄′ε(B

x,y
s )dBx,y

s

∫ t

0
b̄ε(Bx,y

s )dBx,y
s

])

≈ ε
gε2t(F(x),F(y))

σ(y)

(∫ t

0
b̄′ε(Fs,t(x,y))∂sFs,t(x,y)ds− ε

∫ t

0
b̄ε b̄′ε(Fs,t(x,y))ds

+ ε

∫ t

0
b̄′ε(Fs,t(x,y))∂sFs,t(x,y)ds

∫ t

0
b̄ε(Fs,t(x,y))∂sFs,t(x,y)ds

)
.

Finally, for the first term in (26), we have for Gε(s,z) := b̄ε(z)
(
1− sε b̄′ε(z)

)
A1(t) :=E

[
exp
(

ε

∫ t

0
b̄ε(Bx,y

s )dBx,y
s −

ε2

2

∫ t

0
b̄2

ε(B
x,y
s )ds

)

×
(

F(y)−F(x)
ε

− ε

∫ t

0
Gε(s,Bx,y

s )ds+ sb̄′ε(B
x,y
s )dBx,y

s

)]
.

Using the fact that exp(x) = 1+ x+ 1
2 x2 + 1

6 x3 +O(x4) gives
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exp
(

ε

∫ t

0
b̄ε(Bx,y

s )dBx,y
s −

ε2

2

∫ t

0
b̄2

ε(B
x,y
s )ds

)
E
= 1+ ε

∫ t

0
b̄ε(Bx,y

s )dBx,y
s −

ε2

2

∫ t

0
b̄2

ε(B
x,y
s )ds

+
1
2

ε
2(
∫ t

0
b̄ε(Bx,y

s )dBx,y
s −

ε

2

∫ t

0
b̄2

ε(B
x,y
s )ds)2

+
1
6

ε
3(
∫ t

0
b̄ε(Bx,y

s )dBx,y
s −

ε

2

∫ t

0
b̄2

ε(B
x,y
s )ds)3.

Using the previous expansion technique, we expand the above expression. This
gives

A1(t)≈
F(y)−F(x)

ε

(
1+ ε

∫ t

0
b̄ε(Fs,t(x,y))∂sFs,t(x,y)ds− ε2

2

∫ t

0
b̄2

ε(Fs,t(x,y))ds

− ε
3
∫ t

0
b̄′ε(Fs,t(x,y))

s
t

ds+
ε3

2

∫ t

0
b̄′′ε (Fs,t(x,y))

s(t− s)
t

∂sFs,t(x,y)ds

)

− ε

(
1+ ε

∫ t

0
b̄ε(Fs,t(x,y))∂sFs,t(x,y)ds

)
×
∫ t

0

(
Gε(s,Fs,t(x,y))− sb̄′ε(Fs,t(x,y))∂sFs,t(x,y)

)
ds.

Now we need to put all these estimates together into the first order expression in
Iε
1 (t,x,y) defined in Theorem 2.1. That is,

ασ(0)2
ε

2+`
∫ t

0
p̄ε

s (x,0)∂x p̄ε
t−s(0,y)ds

≈αε
`
(
σ(y)−1gε2t(|F(x)|, |F(y)|)+ εB1 + ε

2B2
)
.

Here, we have used the identity (proven in Lemma 10 in [7])∫ t

0
gε2s(F(x),0)gε2(t−s)(0,F(y))

F(y)
ε2(t− s)

ds = gε2t(|F(x)|, |F(y)|).

The following terms in the expansions can be computed and give:
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B1 :=
∫ t

0
gε2s(F(x),0)gε2(t−s)(0,F(y))

F(y)
σ(y)

B1
1(s)

t− s
ds

B1
1(s) :=

∫ s

0
b̄ε(Fu,s(x,0))∂uFu,s(x,0)du+

∫ t

s
b̄ε(Fu,t(0,y))∂uFu,t(0,y)du.

B2 :=
∫ t

0
gε2s(F(x),0)gε2(t−s)(0,F(y))

F(y)B1
2(s)+B2

2(s)
σ(y)(t− s)

ds

B1
2(s) :=− 1

2

∫ s

0
b̄2

ε(Fu,s(x,0))du− 1
2

∫ t

s
b̄2

ε(Fu,t(0,y))du

+
∫ s

0
b̄ε(Fu,s(x,0))∂uFu,s(x,0)du

∫ t

s
b̄ε(Fu,t(0,y))∂uFu,t(0,y)du

B2
2(s) :=

∫ t

s
b̄ε(Fu,t(0,y)− (u− s)b̄′ε(Fu,t(0,y))∂uFu,t(0,y)du.

In fact, with the above formulas one can also compute B3 but as the reader can
guess the expressions are longer. Still, one can see some algebraic structure in these
constants. This is inherent to the parametrix approach and it will be interesting to
understand this structure which is clearly linked to the so called skeleton of Wiener
functionals.

As we have previously explained, our goal here is to explain the technique rather
than providing full technical details. For example, one may entertain the possibility
that condition (R’) is not satisfied and expand the density with the same technique
if one has an expansion of b̄ε in powers of ε .
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