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Abstract We review some fundamental concepts of investment from a mathematical
perspective, concentrating specifically on fractional-Kelly portfolios, which allocate
a fraction of wealth to a growth-optimal portfolio, with the remaining fraction col-
lecting (or paying) interest at a risk-free rate. Using stochastic differential equations,
we lay out a coherent continuous-parameter time-series framework for analysis of
these portfolios, explaining relationships between Sharpe ratios, growth rates, and
leverage. We see how Kelly’s criterion prescribes the same leverage as Markowitz
mean-variance optimization. Furthermore, for fractional Kelly portfolios, we state a
simple distributional relationship between portfolio Sharpe ratio, the fractional coef-
ficient, and portfolio log-returns. These results provide critical insight into realistic
expectations of growth for different classes of investors, from individuals to quan-
titative trading operations. We then illustrate application of the results by analyzing
performance of various bond and equity mixes for an investor. We also demonstrate
how the relationships can be exploited by a simple method-of-moments calculation
to estimate portfolio Sharpe ratios and levels of risk deployment, given a fund’s
reported returns.

1 Introduction

This paper describes quantitative relationships which are important in investment,
including the concept of leverage. In doing so, it provides a range of insights that
could be useful to home investors, quantitative traders, or anyone who is managing
liquid investments.

We are interested in managing a block of capital which can be invested into
one or more risky instruments, or held in cash/debt at a “risk-free” interest rate.
An instrument is simply a particular type of asset that can be bought and sold, and
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exhibits some growth (or decay) in value over time. It is typical to aim for good
long-term growth rate in total capital by investing in a mix of different instruments.
Below we study the question of determining the “optimal” mix. By nature of the
construction of the portfolio, we ensure theoretically, that if gains/losses on capital
are re-invested continuously in time, then the pool of capital will retain non-negative
value. In other words, we cannot lose more than our initial block of capital. 1

Leverage is a critical tool in optimizing capital growth. Roughly speaking, lever-
age is a mechanism by which we can amplify the returns of an investment. While
it might seem natural that we should amplify the returns of a “good” investment as
much as possible, we will see that this is not a good idea. To give a concrete exam-
ple, imagine that on two successive days we observe a 10% loss followed by a 10%
gain. This leaves us with a cumulative 1% loss (0.9× 1.1 = 0.99). If we were to
amplify the two returns by a factor of two, however, a 20% loss followed by a 20%
gain leaves us with a 4% loss (0.8×1.2= 0.96). Thus, somewhat counter-intuitively,
doubling the size of our returns causes our cumulative loss to be be worse than dou-
ble the original loss. This asymmetry suggests to us a potential connection between
volatility, expected growth, and optimal leverage.

In the remainder of this paper, we consider this problem from a continuous-
parameter time series perspective, studying the impact of leverage analytically using
stochastic calculus. It is beyond the scope of this document to provide an introduc-
tion to stochastic calculus, but for a useful starting point, see, e.g. [9], or [4] for
a more comprehensive treatment. To the author’s knowledge, the results stated in
theorem form in this paper do not appear in existing financial literature, although
components of the framework itself, along with associated topics of discussion, can
be found in the literature. In particular, [1, 3, 10] give much detailed discussion of
Kelly portfolios and their advantages and disadvantages. Useful related information
can also be found in [7]. As in [2], we will adopt a continuous-time framework based
on the use of stochastic differential equations, to analyze a portfolio of instruments
whose prices follow a multivariate geometric Brownian motion. [6] (and references
therein) point out the importance of avoiding “bad” outcomes in such portfolios,
pointing out that fractional Kelly schemes (among other solutions) are useful in this
context. In this paper, we also address this problem, obtaining a specific characteri-
zation of the trade-off between growth and safety.

2 Problem Formulation

Suppose that, at time t = 0, an investor has a block of capital A0 to invest, and assume
that it can be allocated to cash, which earns interest continuously at the risk-free rate
r per unit time, or to one or more different risky instruments which generate returns
over time. Over time, we will denote the total capital owned by the investor as

1 However, it is worth noting that this is a theoretical result, since reinvestment of profits/losses
continuously in time is a practical impossibility in most cases.
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{At , t ≥ 0}. (1)

This quantity should be thought of as the total value of all assets, including invest-
ments in particular instruments, and cash/debt. We will assume the existence of a set
of m different investment instruments (not including cash), which have price time
series

{Pt, j, t ≥ 0}, j = 1,2, . . . ,m. (2)

In what follows, we will often refer to the vector of prices by

Pt = (Pt,1, . . . ,Pt,m)
T . (3)

The collection of investments in the m instruments as well as cash will be referred
to as the portfolio. As mentioned above, the value of the portfolio at time t is denoted
by At . Any cash component of the portfolio receives continuously-compounded in-
terest at the risk-free rate r. It will be useful to define a vector version of the risk-free
rate

r = (r,r, . . . ,r)T ∈ Rm. (4)

We define the leverage vector to be

k = (k1, . . . ,km)
T . (5)

and we define total-leverage

κ =
m

∑
j=1

k j. (6)

We will say that our portfolio is non-leveraged if κ ≤ 1.
At any given time t, the investor invests fractions k j of his/her capital At into

the instruments with price Pt, j, holding the remainder in cash if that remainder is
positive, or maintaining the required debt otherwise. Cash is assumed to earn the
interest-free rate r, while debt pays interest at the same rate. By construction, the
amount of cash held at time t is clearly

At(1−κ). (7)

The leverage vector determines the manner in which returns on the m investment
instruments are related to returns in the total capital. To state this property formally,
let us define the infinitesimal return of an investment instrument by

dPt, j/Pt, j. (8)

Then define the infinitesimal return of our total capital by

dAt/At . (9)

Given initial capital A0, the price processes {Pt, j}, j = 1, . . . ,m, and a leverage
vector k, we can solve for {At , t ≥ 0} using the relationship
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dAt/At = (1−κ)rdt +
m

∑
j=1

k jdPt, j/Pt, j (10)

Equation (10) determines the distribution of the process {At}, but it can also be
viewed as a mathematical definition of leverage. The first term on the right rep-
resents the return on capital from risk-free rate interest accrual/payment on the
cash/debt portion of the portfolio, while the summation represents return contributed
by the leveraged investments when the fractions of At invested in Pt, j are k j, for
j = 1, . . . ,m.

The components of our leverage vector do not necessarily have to be less than
one, or add up to one, or even be non-negative.

For example, suppose that we have m = 2 possible investments: an S&P500 mu-
tual fund and a long-term bond fund. (We study a case like this in more detail later
in the paper.) A leverage vector of (0.2,0.2) would indicate that at any given point
in time, we keep one fifth of our total capital in the S&P500 fund, one fifth in the
bond fund, and the remaining three fifths held in cash, accruing interest payment at
the risk-free rate. Alternately, a leverage vector of (0.2,1.8) would indicate that we
would invest one fifth of initial capital in the S&P500 fund, borrow an amount equal
to the initial capital, and invest the four fifths remaining initial capital, along with
the borrowed sum, in the bond fund.

2.1 Objective

There are many possible investment objectives. For example, one could attempt to
minimize the probability of ultimately losing all their capital, attempt to maximize
the expected return relative to some benchmark, maximize some utility function of
wealth, etc. In this paper we aim for good long-term growth profiles for our capital
{At}. To state this more precisely, we will be particularly interested in the expected
log-return per unit time

L = E [log(At+δ/At)]/δ (11)

and log-return variance per unit time

V = Var(log(At+δ/At))/δ . (12)

As we will see below, this approach leads us to a convenient stochastic calculus-
based derivation of Kelly’s formula, and yields additional useful insights.

Direct maximization of L (with no regard for V ) yields the so-called growth-
optimal portfolio, also referred to as the Kelly portfolio. In the long-run, the growth-
optimal portfolio almost-surely leads to more wealth than any competing portfolio. 2

2 More formally, if {At} represents the capital associated with the growth-optimal portfolio, and
{A′t} represents the capital from another portfolio in the same instruments, chosen in a different
manner, then under a modest set of regularity conditions, we can show that (A′t/At)

a.s.→ 0 as t→∞.
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The price to pay for this growth dominance however, is relatively large up and down-
swings in {At}. Fractional Kelly schemes, which simply apply a fractional multiplier
to the growth-optimal portfolio leverage vector, provide one way to address this
problem.

2.2 Mathematical Analysis

We are now in a position to analyze the impact of leverage choice. For the sake of
exposition, we address the univariate case before developing the multivariate case.

2.2.1 Univariate Case

In the univariate (m = 1) case, we can write down a formal stochastic differential
equation to describe the price {Pt} of an instrument over time t ∈ R, t ≥ 0, as

dPt = µPtdt +σPtdWt , (13)
P0 = 1, (14)

where {Wt} is a standard Brownian motion.
The solution to (13,14) is a geometric Brownian motion, for which

d log(Pt) = (µ−σ
2/2)dt +σdWt . (15)

(This follows directly from an application of Itô’s formula to (13,14).) The process
has several important properties, which we will simply state here without proof.

1. It provides a realistic description of many real-life instruments that can be bought
as investments. The parameters µ and σ vary, however, over different invest-
ments and arguably also over time for a particular investment.

2. Pt > 0.
3. The log-return of the price satisfies

log(Pt+δ/Pt)∼ N(µδ −σ
2
δ/2,σ2

δ ). (16)

Now let us consider the behavior of total capital {At , t ≥ 0} over time when we
invest a fraction k (leverage) in the instrument whose price Pt is given by (13,14). It
follows directly from (10) that

dAt = (1− k)rAtdt + kAtdPt/Pt (17)
= [(1− k)r+ kµ]Atdt + kAtσdWt . (18)

In other words, like the underlying instrument price, our amount of capital At also
follows a geometric Brownian motion process, but with different parameters. Con-
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sequently,
d log(At) = [(1− k)r+ kµ− k2

σ
2/2]dt + kσdWt . (19)

It is very important to note3 that

d log(At) 6= k ·d log(Pt). (20)

It follows directly from (19) that

1. At > 0. This is our guarantee that we do not lose more than our initial capital.
However, note that it relies on the unrealistic assumption that we are able to carry
out continuous reinvestment of profits/losses.

2. The log of total amount of capital (including reinvested profits/losses) satisfies

log(At+δ/At)∼ N(rδ + k(µ− r)δ − k2
σ

2
δ/2,k2

σ
2
δ ). (21)

At any time t, equation (21) provides a predictive distribution for our amount of
capital at a time point (t +δ ) in the future. Specifically, it is log-normal.

Following on from (21), we see that the expected log-return per unit time of our
capital is

L(k) = E [log(At+δ/At)]/δ = r+ k(µ− r)− k2
σ

2/2. (22)

Differentiating this with respect to k and setting to zero gives us a formula for the
value of leverage k that maximizes expected log-return per unit time. This is simply

k∗ = (µ− r)/σ
2, (23)

and the corresponding expected log-return per unit time is

L(k∗) = r+
1
2
(µ− r)2/σ

2. (24)

The expression (23) is well-known, and is typically referred to as Kelly’s formula,
for Kelly’s analysis of a closely-related problem (see [5]).

2.2.2 Multivariate Case

It is straightforward to extend both (22) and (23) to the multivariate case when we
have multiple investments (m> 1), and we allocate proportions k= (k1,k2, . . . ,km)

T

of capital to the respective investments. In this case, we define µ = (µ1, . . . ,µm)
T ,

σ = (σ1, . . . ,σm)
T , as well as a correlation matrix R ∈Rm×m. The multivariate ana-

log of (13) becomes

dPt = diag(µ)Ptdt +diag(σ)diag(Pt)dUt , (25)

3 It is a common mistake to presume, for example, that a triple-leverage investment yields triple
the log-returns over time. This is not the case.
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where {Ut} is a multivariate Brownian motion with correlation matrix R, so that

E [Ut ] = 0, Var(Ut) = Rt, (26)

and diag(·) represents a square matrix with diagonal elements given by the vector
argument, and zeros in all off-diagonal positions. It will be convenient to define

Σ = [diag(σ)]R[diag(σ)]. (27)

Also, recall the definition κ = ∑k j = k · em, where em = (1,1, . . . ,1)T ∈ Rm.
Applying (10), it is straightforward to show that there is another standard Brow-

nian motion {Wt} such that the total capital {At} satisfies

dAt = ((1−k · em)r+k ·µ)Atdt +(kT
Σk)1/2AtdWt (28)

= (r−k · r+k ·µ)Atdt +(kT
Σk)1/2AtdWt , (29)

and it follows directly from application of Itô’s formula that

d log(At) = (r+k · (µ− r)−kT
Σk/2)dt +(kT

Σk)1/2dWt , (30)

so the expected log-return per unit time is given by

L(k) = E [log(At+δ/At)]/δ = r+k · (µ− r)−kT
Σk/2, (31)

Consequently Kelly’s formula becomes

k∗ = Σ
−1(µ− r), (32)

with maximum expected log-return per unit time

L(k∗) = r+
1
2
(µ− r)T

Σ
−1(µ− r). (33)

We will also be interested in the variance of the log-return per unit time. From (30),
this is easily seen to be

V (k∗) = Var(log(At+δ/At))/δ = kT
Σk. (34)

Readers may recognize (32) as the solution of a standard Markowitz mean-
variance portfolio weight selection problem [8].
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2.3 Sharpe Ratios and Fractional Kelly Investment

In the finance industry, in the univariate case, it is common practice to refer to the
quantity (µ− r)/σ , as the Sharpe ratio of the investment. 4 We will work with the
closely-related maximal Sharpe ratio of a single investment or a set of investments,
which we define by

SM = [(µ− r)T
Σ
−1(µ− r)]1/2, (35)

where µ and Σ are the parameters defining the growth and volatility of the compo-
nent investments, and r is the vector whose elements are all equal to the risk-free
rate. This is “maximal” in the sense that it represents the maximum Sharpe ratio
over all possible linear combinations of portfolio components. It is easily verified
that in the univariate case, it reduces to SM = |(µ− r)/σ |, which is indeed the max-
imum Sharpe ratio one can obtain by scaling a single investment with Sharpe ratio
(µ− r)/σ .

The maximal Sharpe SM is crucially important, because the maximum growth
rates in (24, 33) increase quadratically with respect to SM.

We have seen that Kelly’s formula prescribes the leverage that maximizes ex-
pected log-return per unit time L of an investment. However, to limit up/down-
swings in capital, it is desirable to operate with a lower total level of risk. To achieve
this, we can apply a multiplier to (32),

kα = αΣ
−1(µ− r), α ∈ [0,1]. (36)

This quantity is often referred to as fractional Kelly leverage. In this light, fractional
Kelly investment can be viewed as a particular means of leverage selection, with α

specifying the level of risk relative to that required for the growth-optimal portfolio.
The following result makes a formal connection between leverage, log-returns

and Sharpe ratios.

Theorem 1 (Sharpe-Leverage Performance Profile). Suppose that we apply frac-
tional Kelly leverage (36) with multiplier α ∈ [0,1] to the portfolio with prices gov-
erned by (25), earning/paying the risk-free interest rate r on the cash/debt com-
ponent. Then the resulting capital process {At} is a geometric Brownian motion
satisfying

d log(At) = [r+(α−α
2/2)S2

M]dt +αSMdWt , (37)

where SM = [(µ−r)T Σ−1(µ−r)]1/2 denotes the maximal Sharpe ratio of the port-
folio. Consequently, {At} has expected log-return per unit time

L(kα) = E [log(At+δ/At)]/δ = r+(α−α
2/2)S2

M (38)

and log-return variance per unit time

V (kα) = Var(log(At+δ/At))/δ = α
2S2

M. (39)
4 It is important to differentiate between this quantity, and estimators thereof. Unfortunately, people
often use the same term to refer to both the quantity and its estimator(s).
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Proof. The derivation of (30) above establishes that {At} is a geometric Brownian
motion. Substituting (36) into (30) and making use of the definition (35) yields (37).
The remaining results then follow directly.

When the conditions of Theorem 1 are met and α = 1, we obtain the growth-
optimal portfolio. More generally, equations (38, 39) show the trade-off we obtain
with different values of α. Values closer to one yield higher expected log-return per
unit time on capital, but values closer to zero give better (reduced) variance of the
log-return around the mean.

3 Examples and Applications

We now consider some practical implications of the theory outlined above, begin-
ning with analysis that would be of interest to a typical individual with some savings
to invest.

3.1 Equity and Bonds Mix

Let us consider a portfolio consisting of only two instruments: {Pt,1} will repre-
sent the price of Vanguard 500 Mutual Fund Index shares (VFIAX), and {Pt,2} will
represent the price of Vanguard Long-Term Treasury Fund shares (VUSUX).

Figure 1 shows differences of logarithms of adjusted daily closing prices for these
two instruments from 2002 to 2023. This time period covers the dot-com bubble of
2002, the sub-prime crisis of 2008, the more recent market turbulence at the onset of
the coronavirus pandemic in early 2020, and the interest-rate reset period beginning
at the end of 2021.

In what follows, we will assume that the risk-free rate r is equal to zero. This is
a fairly reasonable approximation for the post-sub-prime period from 2008 to 2022,
although results here can be easily adapted if r is assumed to be non-zero.

3.1.1 Parameter Estimation

From the raw data shown in the plots in Figure 1, we can easily compute estimators
of µ = (µ1,µ2),

Let the unit of time be one year, assume there are 260 trading days each year, and
define the daily log-returns (shown in the left part of Figure 1) as

Dt, j = log(P(t+1)/260, j)− log(Pt/260, j), t = 1,2, . . . ,n−1, (40)

where n is the total number of trading days of data. We know from (16) that
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Fig. 1 Equity (VFIAX) and Bond (VUSUX) performance from Jan. 2nd, 2002 to Feb.
13th, 2023. Data source: Yahoo Finance.

Dt, j ∼ N((µ j−σ
2
j /2)/260,σ2/260). (41)

Furthermore,
Corr(Dt,1,Dt,2) = R12. (42)

We can therefore take sample mean and variance from our two daily price series,
compute sample correlation, and use them to construct method-of-moments estima-
tors

σ̂
2
j =

260
n−2

n−1

∑
t=1

(Dt, j− D̄ j)
2, D̄ j =

1
n−1

n−1

∑
t=1

Dt, j, (43)

σ̂ j =
√

σ̂2
j , (44)

µ̂ j = 260D̄ j + σ̂
2
j /2, (45)

R̂ jk =
260

σ̂ jσ̂k(n−2)

n−1

∑
t=1

(Dt, j− D̄ j)(Dt,k− D̄k) (46)

With the raw data described above, we obtain

µ̂ = (0.102,0.055)T , σ̂ = (0.200,0.127)T , R̂12 =−0.343. (47)

From a practical perspective, we also want to consider the different impact of
taxation on these two instruments. In the United States, tax on a mutual fund that
tracks the S&P500 is typically close to the long-term capital gain rate of 20%, while
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tax on bond funds, although more complex to compute, is typically closer to stan-
dard income tax, which is often around 40%. To approximate the impact of taxation,
we will therefore adjust the estimates (47) above by multiplying components of µ

by one minus the corresponding tax rate, giving us final estimates

µ̂ = (0.082,0.033), Σ̂ =

[
0.0399 −0.0087
−0.0087 0.0160

]
. (48)

From these estimates, in turn, we can determine the Kelly leverage for the
growth-optimal portfolio by applying (32), obtaining

k∗ = Σ̂
−1

µ̂ ' (2.83,3.58)T . (49)

If µ and Σ were indeed the same as these estimates, and if we could borrow money
to provide leverage, this says we could maximize growth over time of capital by
borrowing 5.41 times our initial capital (assuming a no-interest loan) to obtain total
leverage of 2.83 + 3.58 = 6.41. We would then invest the original capital along
with the borrowed capital into the two components of the portfolio, rebalancing to
hold the fraction of capital in the two components constant. The resulting expected
annual log-return on initial (non-borrowed) capital would be

k∗ · µ̂−k∗T
Σ̂k∗/2' 0.175 (50)

In this argument we have pretended that µ and Σ are known precisely. In fact, es-
timation error on these quantities can have a significant impact, but that analysis is
beyond the scope of this paper.

3.1.2 Leverage Value Configurations

We now consider a range of different investment possibilities. Some of these will be
applied to only one of our two instruments, and for these cases we will use m = 1
along with the corresponding (marginal) components of µ̂ , Σ̂ and the corresponding
estimate Ŝ of Sharpe ratio. In the more interesting cases we will examine portfolios
consisting of both instruments. We consider the following cases.

Cases are constructed as follows.

• Non-leveraged/Double/Triple Equities/Bonds: The non-leveraged approach in-
vests all capital directly into the equities/bonds instrument. Double and triple
versions invest all capital in the same instrument but with leverage 2 or 3, respec-
tively.

• Fractional Kelly (0.31): This applies leverage α = 0.31 times the full-Kelly lever-
age. In this example, it results in total leverage κ approximately equal to 2.0.

• Constrained Kelly (2.0): Here we choose k so as to maximize expected growth L
subject to the constraint that κ = 2. This can be done using Lagrange multipliers,
as described later in Section 5.1.
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Leverage Drift/Diffusion Kelly-Fraction
Name k µ̂ Σ̂ Ŝ α̂

Single-instrument (m = 1) portfolios
Non-Leveraged Equity 1.00 0.082 0.2002 0.410 0.502
Double-Equity 2.00 0.082 0.2002 0.410 1.003
Triple-Equity 3.00 0.082 0.2002 0.410 1.505
Non-Leveraged Bonds 1.00 0.033 0.1272 0.260 0.488
Double-Bonds 2.00 0.033 0.1272 0.260 0.976

Two-instrument (m = 2) portfolios
Fractional Kelly(0.31) (0.88,1.12) (0.082,0.033) Σ̂ (eqn 48) 0.592 0.31
Constr. Kelly(2.0) (1.30,0.70) (0.082,0.033) Σ̂ (eqn 48) 0.592 NA
Full-Kelly (2.83,3.58) (0.082,0.033) Σ̂ (eqn 48) 0.592 1.0

Table 1 Example portfolios.

• Full-Kelly: This choice, given by (49) leads to maximum growth rate over time,
at the cost of high variance and large draw-downs.

Table 1 also shows a term

α̂ = k/(Σ̂−1
µ̂), (51)

which is only defined when the leverage vector k is a multiple of Σ̂−1µ̂ , and in that
case represents an estimate of the ratio of portfolio leverage to growth-optimal lever-
age. Values less than 1.0 are desirable in this context, since it is obvious from (38)
and (39) that α > 1 implies we are taking unnecessary extra risk for a return that
can also be achieved with α < 1.

3.1.3 Simulation Results

It is straightforward to simulate hypothetical capital invested in the portfolios cor-
responding to the test cases. Using data ranging from Jan. 1st, 2002 to Feb. 13th,
2023, we compute the daily portfolio returns using the recorded data. In order to
approximate the tax-effect on the two components, we also apply a negative drift by
subtracting the tax adjustment used on µ in (48) on a daily basis from the log-returns
of the data.

Figure 2 shows cumulative capital {At} over time for a range of different lever-
age settings. The full-Kelly leverage case is omitted from the plot since it distorts
the scale, but the full-Kelly case is included in Figure 3, which shows the log of
cumulative capital.

Table 2 shows corresponding summary statistics, including the sample (annual-
ized) growth rate L̂, the corresponding sample variance V̂ , as well as the final value
and maximum “draw-down” over the time period, which is defined as the maximum
peak-to-trough drop such that the trough occurs after the peak. From a psychological
perspective, investors pay significant attention to difference between the historical
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Triple-Equity
Bonds No Leverage
Double-Bonds
Frac Kelly (0.31)

Fig. 2 Simulated post-tax capital of hypothetical portfolios built of VFIAX and
VUSUX, assuming starting capital of $100000, for a range of different leverage vec-
tors.

maximum and the current value of an investment. Large values of draw-down typi-
cally induce great anxiety.

Several important observations can be made from the results. First, the full-Kelly
case and the triple-equity case both exhibit very large maximum draw-downs over
this time period - 92.4% and 95.6%, respectively. Few investors would hold onto an
investment after losses that large. Both the fractional Kelly and the constrained Kelly
options appear to give a fairly good compromise between greater growth and higher
variance/draw-downs. Of course different investors may different preferences, but
it is notable that of the choices in Table 2, apart from the non-leveraged bond case,
the fractional Kelly option has the smallest value of V̂ and still yields a respectable
growth rate L̂.

3.2 Application to Fund Evaluation

Hedge fund managers generally release very little information about the nature of
their trading operations. However, they often release yearly or quarterly statments
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Equity No Leverage
Double-Equity
Triple-Equity
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Frac Kelly (0.31)
Full Kelly
Constrained Kelly (2.0)

Fig. 3 Simulated post-tax log-return of hypothetical portfolios built of VFIAX and
VUSUX, for a range of different leverage vectors. The full-Kelly case clearly domi-
nates the others in terms of growth, but it also loses 92.4% of its capital value from
Dec. 23rd, 2021 to Oct. 19th, 2022.

of actual returns on their hedge funds. We have already seen that Theorem 1 as-
sists in choosing a desirable leverage vector. Here we see how it leads to a sim-
ple method-of-moments approach to estimate portfolio maximal Sharpe ratio and
risk deployment of a fund, using only such publicly available return data. The ap-
proach relies on an implicit assumption that the fund is applying a fractional Kelly
approach, or something similar. In light of the previous observation at the end of
Subsection 2.2.2 that fractional Kelly leverage is equivalent to industry-standard
Markowitz mean-variance optimization, this is not an unrealistic assumption. This
“reverse-engineering” allows us to evaluate funds in a more nuanced way than sim-
ple inspection of past returns. For example, we can easily differentiate between
funds that obtain high returns by taking excessive risk, and those that obtain high
returns by deployment of high-Sharpe ratio portfolios.

Consider, for example, the annual returns of the well-known (and very strongly
performing) Renaissance Medallion fund. These returns are publicly available in
Appendix 1 of [11], and can easily be translated into log-returns and viewed in light
of equations (38) and (39). Without re-printing the full table itself, we give summary
statistics of their resulting (before-fee) log-returns in Table 3 below.
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Growth Draw-down
Name L̂ V̂ 1/2 Max. Start End Final Value

Single-instrument (m = 1) portfolios
Non-Leveraged Equity 0.062 0.200 56.4% Oct 8 2007 Mar 6 2009 $354,781
Double-Equity 0.083 0.401 84.6% Oct 8 2007 Mar 6 2009 $553,393
Triple-Equity 0.063 0.605 95.6% Jul 18 2007 Mar 6 2009 $372,336
Non-Leveraged Bonds 0.025 0.127 44.9% Aug 3 2020 Oct 21 2022 $166,362
Double-Bonds 0.033 0.253 71.7% Mar 6 2020 Oct 21 2022 $199,389

Two-instrument (m = 2) portfolios
Fractional Kelly(0.31) 0.091 0.184 51.2% Dec 23 2021 Oct 19 2022 $656,615
Constr. Kelly(2.0) 0.099 0.244 62.5% Oct 8 2007 Mar 6 2009 $768,512
Full-Kelly 0.172 0.596 92.4% Dec 23 2021 Oct 19 2022 $3,473,850

Table 2 Summary of simulated performance of example portfolios derived from the
VFIAX and VUSUX instruments, simulated from Feb. 12th, 2001 to Aug. 24th, 2021,
with initial capital $100,000. Risk-free interest rate is assumed to be zero. L̂ denotes
the sample average of the annualized log-return, V̂ 1/2 denotes the annualized sample
standard deviation of those log-returns, and the maximum draw-down is defined as
the maximum drop from peak to trough with trough occurring after the peak.

Date Range 1988-2018 inclusive
# Data Points 31
Average Log-Return 0.490
Std. Dev. (Log-Return) 0.187

Table 3 Summary statistics of Renaissance Medallion Fund returns as given in [11].

Re-arranging the pair of equations (38,39), we see that for a fractional Kelly
investor,

α = 2V (2L+V )−1 (52)
S2

M = α
−1(L+V/2). (53)

By simply matching L = 0.490 and V = 0.1872 from the table above, we see that
the Medallion returns are consistent with deployment of a portfolio with maximal
Sharpe ratio SM ' 2.72 at approximately α = 0.068 times the Kelly-optimal lever-
age. The (estimated) value of 0.068 places them comfortably below the obvious
danger point. A value equal to 1.0 would indicate deployment of risk at the growth-
optimal level, with its extreme volatility. Such a value is not palatable to a typical
investor. Any value larger than 1.0 would indicate a sub-optimal deployment of risk.
A value larger than 2.0 would indicate that the fund will likely eventually collapse
in the sense that its value will converge in probability to zero.
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4 Concluding Remarks

Given a portfolio of instruments with risk, some capital A0, and a risk-free interest
rate r, we have seen that the Kelly portfolio maximizes long-term growth of capi-
tal, but with distressingly large draw-downs along the way. This undesirable quality
can be mitigated by the use of fractional Kelly portfolios, at the cost of a reduction
in long-term growth rate. In Theorem 1, we have directly quantified this distribu-
tional relationship, and given explicit expressions that help us to find a desirable
balance between growth and variance of returns. We have also seen how, under a set
of reasonable assumptions, fractional Kelly investment is the same as Markowitz
mean-variance optimization.

The stochastic differential equation methodology used in this paper has been
used by others in the same context, notably [2], but appears not to be widely appre-
ciated. Within this framework, one could potentially generalize the geometric Brow-
nian motion price models (13, 25) to jump-diffusion models, thereby allowing for
the more realistic case of skewed and heavy-tailed log-returns. Using multivariate
stochastic calculus, it would also possible to carry out analysis of situations where
drift and/or diffusion coefficients µ and Σ are not known and must be estimated.

On the practical side, the relationships given in Theorem 1 have broad appli-
cability. They apply equally well to simple investment of an individual’s personal
funds as to the more sophisticated operations of a quantitative trading organization
or other fund. For example, individual investors can use the implied return distri-
butions to assess the quality of leveraged mutual funds under various assumptions.
At the more sophisticated end of the spectrum, a quantitative trading operation with
a porfolio of known Sharpe ratio could use the result to determine how much cap-
ital/leverage to deploy, while remaining within distributional constraints imposed
by their investors. More generally, the stochastic differential equation framework
provides a solid foundation with which to address important yet-unsolved practical
investment problems.

5 Supporting Results

5.1 Constrained Maximization of Expected Log-Return per Unit
Time

Suppose we wish to choose the leverage vector k ∈ Rm to maximize expected log-
return per unit time (restating equation (31))

L(k) = k ·µ− 1
2

kT
Σk, (54)

subject to the constraint that total-leverage is
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κ =
m

∑
j=1

k j = k · em = κ0, (55)

where em = (1, . . . ,1)T ∈ Rm. We can express the constraint as

(k · em−κ0) = 0. (56)

Thus the Lagrangian is

L (k) = k ·µ− 1
2

kT
Σk−λ (k · em−κ0), (57)

Differentiating with respect to the vector k, and setting to zero, we find that the
value maximizing (54) takes the form

k = Σ
−1(µ−λem). (58)

Substituting (58) into the constraint (56), we can solve for λ , obtaining

λ = (eT
mΣ
−1

µ−κ0)(eT
mΣ
−1em)

−1. (59)

Equations (58) and (59) together specify the leverage vector maximizing L subject
to the required constraint.
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