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Abstract We consider a version of the continuous-time multi-armed bandit problem
where decision opportunities arrive at Poisson arrival times, and study its Gittins
index policy. When driven by spectrally one-sided Lévy processes, the Gittins index
can be written explicitly in terms of the scale function, and is shown to converge to
that in the classical Lévy bandit of Kaspi and Mandelbaum [8].
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1 Introduction

The multi-armed bandit (MAB) problem is a stochastic dynamic optimization prob-
lem where at each decision time, one of J alternatives (called arms) is selected and a
reward is then collected. In its infinite-time horizon formulation, the objective is to
derive a policy (strategy) that maximizes the expected total discounted rewards. An
important assumption of the MAB is that the state of each arm changes only when
it is selected and the evolution of each arm is independent of others. By exploiting
these features, the existing results have shown the optimality of the so-called Git-
tins index policy [6], which selects at each time the arm with the highest Gittins
index. The Gittins index is defined in terms of an optimal stopping problem and can
be computed separately for each arm. The state of each arm is usually assumed to
evolve in a Markovian fashion, and thus the MAB can be seen as an instance of
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the Markov decision process (MDP) problem (see [22]). This optimality result is
important in the MDP research in that the original J-dimensional MDP problem can
be reduced to J independent 1-dimensional MDPs, providing a way to overcome the
curse of dimensionality.

The continuous-time MAB theory has been developed in the 1990s by, for exam-
ple, El Karoui and Karatzas [7] and Kaspi and Mandelbaum [8, 9]. For the setting
where an arm is continuously selected, advanced stochastic analysis techniques, in
particular local time analysis, are required to precisely model the problem. How-
ever, main results in the discrete-time model continue to hold in the continuous-
time model. The Gittins index can be defined in a similar way, and it is optimal to
choose the arm with the highest Gittins index at all times. The advantage of study-
ing a continuous-time model is that the Gittins index can be sometimes obtained
in an explicit form while numerical approaches are usually required in the discrete
time case. In particular, Kaspi and Mandelbaum [8] considered the model driven
by one-dimensional Lévy processes and expressed the Gittins index concisely using
the Wiener-Hopf factorization and excursion theory of Lévy processes.

In this paper, we revisit the MAB problem, in particular the Lévy model of [8],
and study a version where decision opportunities arrive only at independent Pois-
son arrival times. This problem is at the interface between the discrete-time and
continuous-time models. The state of each arm evolves continuously whereas de-
cision times are discrete. We consider two variations of the problem and study the
corresponding Gittins index policy for each. We introduce cutting-edge results of
the fluctuation theory of Lévy processes (e.g. [3, 11]), which had not been available
when the results of [8] were developed.

The Poissonian observation model has recently drawn much attention in the
stochastic control literature (see, e.g., [2, 5, 18, 19, 21, 24]), but it has not been
considered in the MAB problem. With the assumption that decision opportunities
arrive at exponential times, an analytical approach is still possible thanks to recently
developed fluctuation-theory-based methods such as [1, 15, 20]. The Gittins index
can be written in terms of the so-called scale function when the Lévy process has
only one-sided jumps (spectrally one-sided). We further investigate its connection
with [8] by showing the convergence of the Gittins index to that obtained in [8].

The rest of the paper is organized as follows. In Section 2, we review the classical
discrete-time and continuous-time models of the MAB problem, as well as the Lévy
model of [8]. In Section 3, we introduce the Poissonian decision time models and
propose our Gittins index policy. In Section 4, we review the fluctuation theory
of spectrally one-sided Lévy processes and the scale function, and then obtain the
Gittins index explicitly in terms of the scale function. In Section 5, we show the
convergence of our Gittins index to that in [8]. We conclude the paper in Section 6.
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2 Preliminaries

2.1 Discrete-time Markovian bandits

A (multi-armed) Markovian bandit consists of J ≥ 1 arms. For each arm labeled
j ∈ J := {1, . . . ,J}, we use an E j-valued discrete-time Markov process X j =
(X j(k))k≥0 defined on a probability space (Ω j,F j,P j) to model the state dynamics
of arm j. These J processes are assumed mutually independent. At each time k≥ 0,
one of the J arms is selected. A state-dependent reward is then collected and the
state of the arm changes. On the other hand, the states of all the other arms remain
the same.

A policy (strategy) π = (π(k))k≥0 models the arm to be selected at each time
k ≥ 0. It is adapted in the sense that π(k) must be determined based only on the
information collected until time k. Let σπ

j (k) be the number of times arm j ∈J
has been selected before time k ≥ 0 under policy π . At time k, immediately before
making the decision, the state of the arms are (X j(σπ

j (k)), j ∈J ). Using these, the
decision maker needs to determine π(k) and the reward from arm π(k) is collected.
The counters (σπ

j ; j∈J ) are updated as follows: σπ
j (k+1)=σπ

j (k)+1 if j = π(k)
while σπ

j (k+1) = σπ
j (k) if j 6= π(k).

The objective of the MAB problem is to obtain an optimal policy that maximizes
the total expected reward over an infinite-time horizon. Given a discount factor 0 <
β < 1 and a reward function R j : E j→R for each j ∈J , the problem is to compute
the value function

v(x) = sup
π

Ex

[
∞

∑
k=0

β
kRπ(k)(Xπ(k)(σπ

π(k)(k)))

]
, (1)

for x = (x1, . . . ,xJ) ∈ E1× ·· ·×EJ and obtain an optimal strategy π∗. Here, Ex is
the conditional expectation when X j(0) = x j for j ∈J .

In this problem, there exists a simple policy, known as the Gittins index policy,
that works optimally in every instance of the MAB problem. It is optimal to choose
the arm with the highest Gittins index, i.e. to select, at each k ≥ 0,

π
∗(k) = argmax

j∈J
Γj(X j(σπ

j (k))),

where the Gittins index of arm j at state x is a “normalized maximal reward”

Γj(x) := sup
τ≥1

E j
x
[
∑

τ−1
k=0 β kR j(X j(k))

]
E j

x
[
∑

τ−1
k=0 β k

] , (2)

which can be computed without any knowledge about the other arms. Here, τ is
chosen over all stopping times greater than or equal to 1 with respect to the filtration
generated by (X j(k))k≥0, and E j

x is the expectation operator of the law of P j
x under

which X j(0) = x assuming arm j is always selected.
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The Gittins index (2) can be derived by computing the unique value of γ such
that the value of the optimal stopping problem

sup
τ≥1

Ex

[ τ−1

∑
k=0

β
k (R j(X j(k))− γ

)]
(3)

becomes zero; see [9, Eqn. (20)].

2.2 Continuous-time bandits

In the continuous-time model, the state process X j = (X j(t))t≥0, for j ∈J , is
an E j-valued continuous-time process defined on a probability space (Ω j,F j,P j).
Again, these processes are assumed mutually independent.

The evolution of the arms is given by

X := (X(s) = (X1(s1), . . . ,XJ(sJ)),s = (s1, . . . ,sJ)≥ 0),

which is adapted to the multiparameter filtration (F (s)=F 1(s1)∨·· ·∨F J(sJ))s≥0
where (F j(t))t≥0 is the natural filtration generated by X j for j ∈J . For more
details, we refer the reader to [8].

In the continuous-time model, a strategy is given by a J-dimensional process

T = (T(t) = (T 1(t), . . . ,T J(t)); t ≥ 0)

where T j(t) is the amount of time allocated to arm j until t. Naturally, T(t) is
nondecreasing, and T 1(t)+ · · ·+T J(t) = t for all t ≥ 0. A strategy has to be adapted
and hence {

T 1(t)≤ s1, . . . ,T J(t)≤ sJ
}
∈F (s)

for all t ≥ 0 and s = (s1, . . . ,sJ) ∈ [0,∞)J .
Given a discount factor q > 0 and a reward function r j : E j → R, j ∈J , the

objective is to maximize the total discounted expected reward

v(x) = sup
T

Ex

[∫
∞

0
e−qt

∑
j∈J

r j (X j(T j(t))
)

dT j(t)

]

over all allocation strategies T. Regarding the reward function, for the problem to
be well-defined, it is assumed that

E j
x

[∫
∞

0
e−qt |r j(X j(t))|dt

]
< ∞, j ∈J , x ∈ E j (4)

where again E j
x is the expectation operator of the law P j

x of X j under which X j(0) =
x assuming arm j is always selected.



Lévy bandits under Poissonian decision times 5

The Gittins index in the continuous-time model is analogous to (2) where the
summations are replaced by integrals:

Γj(x) := sup
τ>0

E j
x
[∫

τ

0 e−qtr j(X j(t))dt
]

E j
x
[∫

τ

0 e−qtdt
] , j ∈J , x ∈ E j. (5)

Similar to the discrete-time counterpart, it is optimal to choose the arm with the
highest Gittins index, although some technical details are needed to deal with the
times at which multiple Gittins indices coincide.

2.3 Lévy bandits

As a special case of the continuous-time model, in Kaspi and Mandelbaum [8],
an explicit expression of the Gittins index (5) was obtained under the following
assumption: for each j ∈J ,

1. the state process X j is an R-valued Lévy process (E j = R);
2. the reward function r j is increasing and continuous.

Under these assumptions, the Gittins index (5) for arm j ∈J when its state is
x ∈ R can be written concisely by

Γj(x) =
∫
[0,∞)

r j(x+ y)µ j(dy), x ∈ R,

where µ j is the probability measure determined by∫
[0,∞)

e−θy
µ

j(dy) =
ϕ̄ j(q,0)
ϕ̄ j(q,θ)

, θ ≥ 0, (6)

in terms of the Laplace exponent ϕ̄ j(q,θ) of the inverse local time at maximum and
the ascending ladder height process (L−1(t),H(t))t≥0 (see Section 5.1). The above
characterization in terms of (6) is given in (4.5) of [8], which is derived from an
alternative expression (3.3) of [8] via the Wiener-Hopf factorization.

The optimal value function can be written in terms of the Gittins index function.
We have

v(x) = Ex

∫ ∞

0
e−qt

∨
j∈J

Γj[X j(T ∗, j(t))]dt


where X j(t) := inf0≤u≤t X j(u) is the running infimum process and (T ∗, j; j ∈J ) is
the allocation time under the Gittins index policy.
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3 Periodic observation models

We now consider a version of the continuous-time model where decision times ar-
rive at exponential times. Let N = (N(t))t≥0 be a Poisson process with rate λ > 0,
independent of X j for all j ∈ J , with arrival times T := {T1,T2, . . .} (hence
Tk+1−Tk, k ≥ 0, is an independent exponential time with mean λ−1 where T0 := 0
for convenience). We assume the decision times are given by T ∪{0}. For each Tk,
k ≥ 0, one arm is selected. If arm j is selected at Tk, its state changes as a Lévy
process according to the law P j until the next decision time Tk+1, while the states of
the other arms remain the same during the period.

We consider two variations of the problem when X j is a one-dimensional Lévy
process for each j ∈J .

3.1 Problem 1

With a discount factor q > 0 and a reward function R j : R→ R, we consider the
maximization problem:

v(x) = sup
π

Ex

[
∞

∑
k=0

e−qTk Rπ(k)(Xπ(k)(σπ

π(k)(k)))

]
,

which can be seen as a version of the discrete-time model (1) where the deterministic
decision times N∪{0} are replaced by the Poisson arrival times (in addition to zero)
T ∪{0}. Here, analogously to (1), π(k) ∈J denotes the arm selected at time Tk
and

σ
π
j (k) :=

k−1

∑
i=0

(Ti+1−Ti)1{π(i)= j}

is the amount of times arm j has been active before Tk under policy π . The selec-
tion π(k) must be determined based only on the information collected right before
making decisions, i.e.

T1, . . . ,Tk and X j(t), t ≤ σ
π
j (k) for all j ∈J . (7)

Analogous to what is assumed in [8], we assume the following.

Assumption 3.1 For each j ∈J , we assume

1. the reward function R j is strictly increasing,
2. We have E j

x

[
∑

∞
k=0 e−qTk |R j(X j(Tk)|

]
< ∞ for x ∈R, where E j

x is the same as that
in the continuous-time model in Section 2.2.
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3.2 Problem 2

As a special case of Problem 1, we also consider a variant of the continuous-time
model reviewed in Section 2.2, where the change of selection can be made only at
T ∪{0}. At each Tk, an arm is selected and it is locked in until Tk+1. The difference
from Problem 1 is that the reward depends on the path between the decision times.
This can be modeled as a maximization problem

v(x) = sup
π

vπ(x),

with

vπ(x) := Ex

[∫
∞

0
e−qt

∑
j∈J

r j (X j(Sπ
j (t))

)
dSπ

j (t)

]
,

where, for each j ∈J , r j : R→ R and Sπ
j (t) is the amount of time at which j has

been active until time t under π . For Tk ≤ t < Tk+1, Sπ

π(k)(t) = σπ

π(k)(k)+ (t−Tk),
and hence

vπ(x) = Ex

[
∞

∑
k=0

∫ Tk+1

Tk

e−qtrπ(k)
(

Xπ(k)(σπ

π(k)(k)+(t−Tk))
)

dt

]
.

With G (Tk) all information observed until Tk under π (i.e. (7)) and eλ an indepen-
dent exponential random variable with mean λ−1, noting that π(k) ∈ G (Tk) and
because Tk+1−Tk ∼ eλ and is independent of G (Tk), the strong Markov property
gives

vπ(x) = Ex

[
∞

∑
k=0

Ex

(∫ Tk+1

Tk

e−qtrπ(k)
(

Xπ(k)(σπ

π(k)(k)+(t−Tk))
)

dt
∣∣∣G (Tk)

)]

= Ex

[
∞

∑
k=0

e−qTkEx

(∫ eλ

0
e−qtrπ(k)

(
X (π(k))(σπ

π(k)(k)+ t)
)

dt
∣∣∣G (Tk)

)]

= Ex

[ ∞

∑
k=0

e−qTk Rπ(k)(Xπ(k)(σπ

π(k)(k)))
]
,

(8)

where

R j(x) := E j
x

[∫ eλ

0
e−qtr j(X j(t))dt

]
= E j

x

[∫
∞

0
e−(q+λ )tr j(X j(t))dt

]
, j ∈J and x ∈ R.

(9)

Hence, this is a special case of Problem 1 with this choice of the reward function.
For Problem 2, we assume below, following what are assumed in [8].

Assumption 3.2 For each j ∈J , we assume
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1. the reward function r j is strictly increasing and continuous.
2. the integrability condition (4) is satisfied.

This assumption guarantees that (9) is finite and Assumption 3.1 is fulfilled.

3.3 Gittins index

We define the Gittins index for our problems, analogously to those in the classical
case. For simplicity, we fix an arm j ∈J and omit the index in an obvious manner
(e.g. R≡ R j and X ≡ X j). Here, we follow similar steps as [9, Section 3.6] to derive
our Gittins index.

Recall that the Gittins index in the discrete-time case (2) is derived by considering
the optimal stopping problem (3) parameterized by γ . Thus, it is natural to consider
an analogous index in the Poissonian decision time settings, by considering (3) with
the deterministic decision times replaced by Poisson arrival times.

For each γ ∈ R, consider the following auxiliary optimal stopping problem

v(x,γ) = sup
M≥1

Ex

[
M−1

∑
k=0

e−qTk (R(X(Tk))− γ)

]
,

where M is selected from a set of stopping times greater than or equal to 1 with
respect to the filtration A := (Ak)k≥0 with Ak := σ (Tk,1≤ i≤ k,X(t), t ≤ Tk), i.e.
we stop at TM for an A-stopping time M.

Lemma 1. For x ∈ R, the mapping γ 7→ v(x,γ) is strictly decreasing and convex.

Proof. For γ > γ and an A-stopping time M ≥ 1,

Ex

[M−1

∑
k=0

e−qTk
(

R(X(Tk))− γ

)]
≥ (γ− γ)+Ex

[M−1

∑
k=0

e−qTk (R(X(Tk))− γ)
]
.

After maximizing both sides over M, the decreasing property is immediate.
Regarding the convexity, for δ ∈ [0,1], γ1,γ2 ∈ R, and A-stopping time M,

vM(x,δγ1 +(1−δ )γ2) := Ex

[M−1

∑
k=0

e−qTk [R(X(Tk))− (δγ1 +(1−δ )γ2)]
]

= δEx

[M−1

∑
k=0

e−qTk [R(X(Tk))− γ1]
]
+(1−δ )Ex

[M−1

∑
k=0

e−qTk [R(X(Tk))− γ2]
]

where the decomposition makes sense from Assumption 3.1(2) together with the
fact that Ex

[
∑

∞
k=0 e−qTk

]
= Ex[1+

∫
(0,∞) e−qsdN(s)] = (λ + q)/q < ∞. This gives

vM(x,δγ1+(1−δ )γ2)≤ δv(x,γ1)+(1−δ )v(x,γ2) and hence v(x,δγ1+(1−δ )γ2)≤
δv(x,γ1)+(1−δ )v(x,γ2), showing the convexity.
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Fix x ∈R. By Lemma 1 we have that the mapping γ 7→ v(x,γ) is continuous, and
monotone convergence gives limγ↓−∞ v(x,γ) = ∞ and limγ↑∞ v(x,γ) = −∞. Hence,
v(x, ·) has a unique root, which we denote by Γ (x) such that

v(x,γ)> 0⇐⇒ γ < Γ (x),

v(x,γ) = 0⇐⇒ γ = Γ (x),

v(x,γ)< 0⇐⇒ γ > Γ (x).
(10)

We call Γ (x) the Gittins index for our problem.
By these obtained characteristics of the optimal stopping problem, following the

same arguments in Section 3.6 of [9], we derive our Gittins index in the form anal-
ogous to (2).

By Snell’s optimal-stopping theory (see, e.g., [23]) we have that the stopping rule
that attains v(x,γ) is given by

τ(x,γ) := inf{m≥ 1 : v(X(Tm),γ)≤ 0}
= inf{m≥ 1 : Γ (X(Tm))≤ γ},

(11)

where the latter holds by (10).
Therefore, for any A-stopping time M′ ≥ 1,

0 = v(x,Γ (x)) = sup
M≥1

Ex

[M−1

∑
k=0

e−qTk [R(X(Tk))−Γ (x)]
]
≥ Ex

[M′−1

∑
k=0

e−qTk [R(X(Tk))−Γ (x)]
]

= Ex

[M′−1

∑
k=0

e−qTk R(X(Tk))
]
−Γ (x)Ex

[M′−1

∑
k=0

e−qTk
]
,

(12)

and thus

Γ (x)≥
Ex

[
∑

M′−1
k=0 e−qTk R(X(Tk))

]
Ex

[
∑

M′−1
k=0 e−qTk

] .

On the other hand, by (11), the inequality (12) holds with equality when M′ equals

τ(x,Γ (x)) = inf{m≥ 1 : Γ (X(Tm))≤ Γ (x)}.

This implies that

Γ (x) = sup
M≥1

Ex

[
∑

M−1
k=0 e−qTk R(X(Tk))

]
Ex

[
∑

M−1
k=0 e−qTk

] =
Ex

[
∑

τ(x,Γ (x))−1
k=0 e−qTk R(X(Tk))

]
Ex

[
∑

τ(x,Γ (x))−1
k=0 e−qTk

] . (13)

Note that both the numerator and denominator are finite by Assumption 3.1(2).



10 José-Luis Pérez and Kazutoshi Yamazaki

We now write (13) more explicitly. By Assumption 3.1 and because X is spatially
homogeneous, Γ (x) is strictly increasing in x and thus

τ(x,Γ (x)) = inf{m≥ 1 : X(Tm)≤ x}. (14)

Because N is a Poisson process with arrival times T := (Ti)i∈N, using

T−x := Tτ(x,Γ (x)) = inf{S ∈T : X(S)≤ x},

we have

Ex

[
τ(x,Γ (x))−1

∑
k=0

e−qTk R(X(Tk))

]

= R(x)+Ex

[∫
(0,T−x ]

e−qsR(X(s))dN(s)
]
−Ex

[
e−qT−x R(X(T−x ))

]
= R(x)+Ex

[∫
(0,T−x ]

e−qsR(X(s))1{X(s)>x}dN(s)
]

= R(x)+λEx

[∫ T−x

0
e−qsR(X(s))1{X(s)>x}ds

]
.

Here, the second equality holds because if Ti < T−x then X(Ti) > x for all i ≥ 1
whereas X(T−x )≤ x by the definition of T−x . The last equality holds by compensation
formula.

We hence have the following.

Theorem 1. The Gittins index Γ for Problem 1 is

Γ (x) =

R(x)+λEx

[∫ T−x

0
e−qsR(X(s))1{X(s)>x}ds

]

1+λEx

[∫ T−x

0
e−qs1{X(s)>x}ds

] , x ∈ R. (15)

The Gittins index for Problem 2 can be written by substituting (9) in (15).

Remark 1. As λ → 0, the Gittins index Γ (x) converges to the instantaneous reward
R(x) for all x∈R. In particular, it converges to the q-resolvent Ex [

∫
∞

0 e−qtr(X(t))dt]
for Problem 2. These results are consistent because, as λ goes to zero, the future
rewards vanish.

4 Spectrally one-sided cases

In this section, we focus on the spectrally negative and positive cases and compute
the Gittins index (15) in terms of the scale function. Recall that a spectrally negative
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Lévy process is a Lévy process without positive jumps that does not have monotone
paths a.s. The spectrally positive Lévy process is its dual process.

4.1 Review of fluctuation theory for spectrally negative Lévy
processes

We first review the fluctuation theory and scale function of the spectrally negative
Lévy process.

Let (Y (t))t≥0 be a spectrally negative Lévy process defined on a probability space
(Ω ,F ,P). We denote its Laplace exponent by

ψ(θ) := logE
[
eθY (1)], θ ≥ 0, (16)

which is known to be convex on [0,∞) and admits its right-inverse

Φ(q) := sup{s≥ 0 : ψ(s) = q}, q≥ 0. (17)

For y ∈ R, let Py be the conditional probability under which Y (0) = y and Ey be its
expectation operator. We omit the subscript when y = 0.

Fix q ≥ 0. The q-scale function W (q) is a mapping from R to [0,∞) that takes
value zero on (−∞,0), while on [0,∞) it is a continuous and strictly increasing
function with the Laplace transform∫

∞

0
e−θxW (q)(x)dx =

1
ψ(θ)−q

, θ > Φ(q). (18)

Define also the second scale function

Z(q)(x;θ) := eθx
(

1+(q−ψ(θ))
∫ x

0
e−θzW (q)(z)dz

)
, x ∈ R, θ ≥ 0.

In particular, for x ∈ R and λ > 0,

Z(q)(x;Φ(q+λ )) = eΦ(q+λ )x
(

1−λ

∫ x

0
e−Φ(q+λ )zW (q)(z)dz

)
,

which can also be written by (18),

Z(q)(x;Φ(q+λ )) = eΦ(q+λ )x
λ

∫
∞

x
e−Φ(q+λ )zW (q)(z)dz

= λ

∫
∞

0
e−Φ(q+λ )zW (q)(z+ x)dz. (19)

There are a number of applications of the scale function. For example, the q-
resolvent can be written
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Ey

[∫
∞

0
e−qs1A(Y (s))ds

]
=
∫
R

1A(y+u)g(q)(u)du, (20)

for any Borel set A on R where

g(q)(u) :=
e−Φ(q)u

ψ ′(Φ(q))
−W (q)(−u), u ∈ R; (21)

see [10, Theorem 2.7 (iv)].
The joint Laplace transform of the first passage time

τ
−
0 := inf{t > 0 : Y (t)< 0} (22)

and the overshoot Y (τ−0 ) is given by the following identity

H(q)(y;θ) := Ey

[
e−qτ

−
0 +θY (τ−0 )1{τ−0 <∞}

]
= Z(q)(y;θ)− ψ(θ)−q

θ −Φ(q)
W (q)(y), y ∈ R, θ ≥ 0; (23)

see, e.g., Eqn. (4.5) in [12]. In particular,

H(q)(y;Φ(q+λ )) = Z(q)(y;Φ(q+λ ))− λ

Φ(q+λ )−Φ(q)
W (q)(y), y ∈ R.

Similar results have been obtained for the Poisson observation case. Recall that
T := (Tn)n≥1 is the set of jump times of an independent Poisson process with rate
λ . We define for z ∈ R

T̃−z := inf{S ∈T : Y (S)< z} and T̃+
z := inf{S ∈T : Y (S)> z} .

Using [19, Theorem B.1] and [13, Theorem 3.1], we have the following.

Lemma 2. Let A be a Borel set on R.
(1) We have

E

[∫ T̃−0

0
e−qt1A(Y (t))dt

]
=

Φ(q+λ )−Φ(q)
λ

∫
A

H(q+λ )(−u;Φ(q))du.

(2) We have

E

[∫ T̃+
0

0
e−qt1A(−Y (t))dt

]
=

Φ(q+λ )−Φ(q)
λ

∫
A

H(q)(u;Φ(q+λ ))du.
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4.2 Gittins index for spectrally one-sided Lévy processes

We now express the Gittins index (15) in terms of the scale function for both spec-
trally negative and positive cases.

Proposition 1. Suppose X is a spectrally negative Lévy process with its Laplace
exponent ψ and scale function W (q) as defined in Section 4.1.

1. The Gittins index (15) for Problem 1 can be written, for x ∈ R,

Γ (x) =
Φ(q)

Φ(q+λ )

(
R(x)+(Φ(q+λ )−Φ(q))

∫
∞

0
R(x+ y)e−Φ(q)ydy

)
. (24)

2. The Gittins index (15) for Problem 2 can be written, for x ∈ R,

Γ (x) =
Φ(q)

Φ(q+λ )

[∫
R

r(x+u)g(q+λ )(u)du

+(Φ(q+λ )−Φ(q))
∫

∞

0
e−Φ(q)y

∫
R

r(x+ y+u)g(q+λ )(u)dudy

]
, (25)

where g(q+λ ) is defined as in (21) (with q replaced by q+λ ).

Proof. (1) By Lemma 2(1) with Y = X and because H(q+λ )(−y;Φ(q)) = e−Φ(q)y

for all y≥ 0,

Ex

[∫ T−x

0
e−qsR(X(s))1{X(s)>x}ds

]
= E

[∫ T−0

0
e−qsR(X(s)+ x)1{X(s)>0}ds

]

=
Φ(q+λ )−Φ(q)

λ

∫
∞

0
R(x+ y)e−Φ(q)ydy.

By replacing R(·) with 1, we also have Ex

[∫ T−x
0 e−qs1{X(s)>x}ds

]
= (Φ(q+ λ )−

Φ(q))/(λΦ(q)). Substituting these in (15), we have (24).
(2) By (9) and (20), we have R(x) =

∫
R r(x+ u)g(q+λ )(u)du, which is finite by

Assumption 3.2. Substiuting this in (24), we have (25).

Proposition 2. Suppose X is a spectrally positive Lévy process whose dual process
−X is a spectrally negative Lévy process with its Laplace exponent ψ and scale
function W (q).

1. The Gittins index for Problem 1 is given by, for x ∈ R,

Γ (x) =
qΦ(q+λ )

(λ +q)Φ(q)

(
R(x)+(Φ(q+λ )−Φ(q))

∫
∞

0
R(x+ y)H(q)(y;Φ(q+λ ))dy

)
.

(26)
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2. The Gittins index for Problem 2 is given by, for x ∈ R,

Γ (x) =
qΦ(q+λ )

(λ +q)Φ(q)

(∫
R

r(x−u)g(q+λ )(u)du

+(Φ(q+λ )−Φ(q))
∫

∞

0
H(q)(y;Φ(q+λ ))

∫
R

r(x+ y−u)g(q+λ )(u)dudy
)
.

(27)

Proof. (1) By Lemma 2(2) with Y =−X ,

Ex

[∫ T−x

0
e−qsR(X(s))1{X(s)>x}ds

]

= E

[∫ T̃+
0

0
e−qsR(−Y (s)+ x)1{−Y (s)>0}ds

]

=
Φ(q+λ )−Φ(q)

λ

∫
∞

0
R(x+ y)H(q)(y;Φ(q+λ ))dy,

which is finite by Assumption 3.1(2). On the other hand,

Ex

[∫ T−x

0
e−qs1{X(s)>x}ds

]
= Ex

[∫ T−x

0
e−qsds

]
−Ex

[∫ T−x

0
e−qs1{X(s)≤x}ds

]
.

(28)

Here, by identity (62) in [16],

Ex

[∫ T−x

0
e−qsds

]
1
q

(
1−Ex

[
e−qT−x

])
=

1
q

(
1− Φ(q+λ )−Φ(q)

Φ(q+λ )

)
=

1
q

Φ(q)
Φ(q+λ )

,

and, by Lemma 2(2) with Y =−X and A = (−∞,0],

Ex

[∫ T−x

0
e−qs1{X(s)≤x}ds

]
=E

[∫ T̃+
0

0
e−qs1{−Y (s)≤0}ds

]

=
∫ 0

−∞

Φ(q+λ )−Φ(q)
λ

H(q)(y,Φ(q+λ ))dy

=
∫

∞

0

Φ(q+λ )−Φ(q)
λ

e−Φ(q+λ )ydy

=
Φ(q+λ )−Φ(q)

Φ(q+λ )λ
.

Substituting these in (28) gives
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1+λEx

[∫ T−x

0
e−qs1{X(s)>x}ds

]
=1+λ

(
1
q

Φ(q)
Φ(q+λ )

− Φ(q+λ )−Φ(q)
Φ(q+λ )λ

)
=
(λ +q)Φ(q)
qΦ(q+λ )

.

Substituting these we have (26).
(2) By (9) and (20),

R(x) = E
[∫

∞

0
e−(q+λ )sr(X(s)+ x)ds

]
=E
[∫

∞

0
e−(q+λ )sr(−Y (s)+ x)ds

]
=
∫
R

r(x−u)g(q+λ )(u)du,

which is finite by Assumption 3.2(2). Substiuting this in (26), we have (27).

5 Convergence of the Gittins index as λ → ∞

In this section, we show the convergence of the Gittins indices obtained in Proposi-
tions 1 and 2 to those in the classical Lévy case [9].

5.1 Classical Lévy bandit case

We first review and obtain a characterization of the Gittins index of [9]. Let Y be a
spectrally negative Lévy process and use the same notations used in Section 4.1.

For the spectrally negative case, the local time at maximum can be selected to be
L(t) = Y (t) := sup0≤u≤t Y (u) for t ≥ 0. Then, the ascending ladder height process
becomes (L−1(t),H(t))t≥0 where

L−1(t) := inf{s > 0 : Y (s)> t}= inf{s > 0 : Y (s)> t},

and because Y does not jump upwards,

H(t) := Y (L−1(t)) = t,

(see [11, Section 6.5.2]). As in [11, (6.34)], the pair (L−1(t),H(t))t≥0 becomes a
two-dimensional subordinator with its Laplace exponent

E[e−qL−1(1)−θH(1)1{1<L(∞)}] = e−κ(q,θ) (29)

where
κ(q,θ) := Φ(q)+θ , q,θ ≥ 0.
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By the Wiener-Hopf factorization, with L̂ and (L̂−1, Ĥ) those for the dual process
−Y (called the descending ladder height process)

E[e−qL̂−1(1)−θ Ĥ(1)1{1<L̂(∞)}] = e−κ̂(q,θ) (30)

with

κ̂(q,θ) :=
q−ψ(θ)

Φ(q)−θ
, q,θ ≥ 0;

see [11, Eqn. (6.35)].
Using these, the Laplace transform (6) that characterizes the Gittins index in the

classical Lévy model can be written explicitly.
(1) Suppose X is a spectrally negative Lévy process. By (29) for Y = X ,

ϕ̄(q,θ) = κ(q,θ) = Φ(q)+θ , q,θ ≥ 0,

and thus (6) becomes ∫
[0,∞)

e−θy
µ(dy) =

Φ(q)
Φ(q)+θ

, θ ≥ 0. (31)

(2) Suppose X is a spectrally positive Lévy process. Let ψ be the Laplace expo-
nent of its dual (spectrally negative) Lévy process and Φ its right inverse. By (30)
for Y =−X ,

ϕ̄(q,θ) = κ̂(q,θ) =
q−ψ(θ)

Φ(q)−θ
, θ ≥ 0,

and (6) becomes ∫
[0,∞)

e−θy
µ(dy) =

q
Φ(q)

θ −Φ(q)
ψ(θ)−q

, θ ≥ 0. (32)

5.2 Convergence of the Gittins index

Suppose X is spectrally negative. For Problem 1, the Gittins index (24) can be writ-
ten

Γ (x) =
∫
[0,∞)

R(x+ y)µλ
1 (dy), x ∈ R, (33)

with

µ
λ
1 (dy) :=

Φ(q)
Φ(q+λ )

(
δ0(dy)+1{y>0}(Φ(q+λ )−Φ(q))e−Φ(q)ydy

)
, y≥ 0,

where δ0 is the Dirac measure at zero.
For Problem 2, the (normalized) Gittins index (25) can be written
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(q+λ )Γ (x) =
(q+λ )Φ(q)

Φ(q+λ )

[∫
R

r(x+u)g(q+λ )(u)du (34)

+(Φ(q+λ )−Φ(q))
∫

∞

0

∫
R

r(x+w)e−Φ(q)yg(q+λ )(w− y)dwdy
]

(35)

=
∫
R

r(x+u)µλ
2 (du), x ∈ R, (36)

where

µ
λ
2 (du) :=

(q+λ )Φ(q)
Φ(q+λ )

[
g(q+λ )(u)+(Φ(q+λ )−Φ(q))( f (q) ?g(q+λ ))(u)

]
du, u ∈ R.

Here,
( f (q) ?g(q+λ ))(u) :=

∫
∞

0
e−Φ(q)yg(q+λ )(u− y)dy

which is a convolution of f (q)(u) := e−Φ(q)u1{u>0} and g(q+λ ) as defined in (21).
In (36), we consider a normalized version because R(·) in (9) depends on λ . This

normalization is appropriate in view of Remark 2(2) below.

Remark 2. 1. By setting R ≡ 1 in (33), we have 1 = Γ (x) = µλ
1 ([0,∞)) and hence

µλ
1 is a probability measure.

2. When r ≡ 1, R = (q+ λ )−1 (see (9)) and thus Γ (x) ≡ (q+ λ )−1. Substituting
these in (36), we have µλ

2 (R) = 1, and thus µλ
2 is a probability measure.

Proposition 3. When X is spectrally negative, the measures µλ
1 and µλ

2 converge
weakly to µ (defined by (31)) as λ → ∞.

Proof. Proof for Problem 1. For θ ≥ 0, because∫
[0,∞)

e−θy[δ0(dy)+(Φ(q+λ )−Φ(q))1{y>0}e
−Φ(q)ydy]

=1+
Φ(q+λ )−Φ(q)

Φ(q)+θ
=

θ +Φ(q+λ )

Φ(q)+θ
,

the Laplace transform of µλ
1 becomes∫

[0,∞)
e−θy

µ
λ
1 (dy) =

Φ(q)
Φ(q+λ )

θ +Φ(q+λ )

Φ(q)+θ
, (37)

which converges to (31) as λ →∞. By the the continuity theorem for Laplace trans-
forms, the weak convergence holds.

Proof for Problem 2. Because µλ
2 has a support R, we consider Fourier trans-

forms. To this end, define the characteristic exponent of X = Y by Ψ(θ) =−ψ(iθ)
such that

E[eiθX(s)] = e−Ψ(θ)s, θ ∈ R,s≥ 0. (38)
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Fix θ ∈ R. Using (20) and (38), the Fourier transform of g(q+λ ) becomes∫
R

eiθyg(q+λ )(y)dy = E
[∫

∞

0
e−(q+λ )seiθX(s)ds

]
=
∫

∞

0
e−(q+λ )se−Ψ(θ)sds =

1
Ψ(θ)+(q+λ )

. (39)

On the other hand, the Fourier transform of f (q) becomes
∫
R eiθy f (q)(y)dy=

∫
∞

0 eiθye−Φ(q)ydy=
(Φ(q)− iθ)−1. By these and the convolution theorem,∫

R
eiθy( f (q) ?g(q+λ ))(y)dy =

1
(Ψ(θ)+(q+λ ))(Φ(q)− iθ)

.

This together with (39) gives

∫
R

eiθy
µ

λ
2 (dy) =

Φ(q)
Φ(q+λ )

(q+λ )

Ψ(θ)+(q+λ )

(
1+

Φ(q+λ )−Φ(q)
Φ(q)− iθ

)
=

Φ(q+λ )− iθ
Φ(q+λ )

(q+λ )

Ψ(θ)+(q+λ )

Φ(q)
Φ(q)− iθ

,

(40)

which converges as λ → ∞ to
∫
[0,∞) eiθyµ(dy) = Φ(q)/(Φ(q)− iθ), matching (31)

(with θ replaced by −iθ ). By the continuity theorem, the weak convergence holds.

Remark 3. (1) For Problem 1, the Laplace transform (37) can be written∫
[0,∞)

e−θy
µ

λ
1 (dy) =

ϕ1(0,q,λ )
ϕ1(θ ,q,λ )

where ϕ1(θ ,q,λ ) :=
Φ(q)+θ

θ +Φ(q+λ )
.

(2) For Problem 2, the Fourier transform (40) can be written∫
R

eiθy
µ

λ
2 (dy) =

ϕ2(0,q,λ )
ϕ2(θ ,q,λ )

where ϕ2(θ ,q,λ ) :=
(Ψ(θ)+(q+λ ))(Φ(q)− iθ)

Φ(q+λ )− iθ
.

These expressions can be seen as generalizations of the classical case (6).

We now consider the spectrally positive case. For Problem 1, the Gittins index
(26) can be written

Γ (x) =
∫
[0,∞)

R(x+ y)µλ
1 (dy), x ∈ R,

with

µ
λ
1 (dy) :=

qΦ(q+λ )

(λ +q)Φ(q)

(
δ0(dy)+1{y>0}(Φ(q+λ )−Φ(q))H(q)(y,Φ(q+λ ))dy

)
, y≥ 0.

For Problem 2, the Gittins index (27) can be written with ĝ(u) := g(−u), u ∈ R,
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(q+λ )Γ (x)

=
qΦ(q+λ )

Φ(q)

[∫
R

r(x−u)g(q+λ )(u)du

+(Φ(q+λ )−Φ(q))
∫

∞

0

∫
R

H(q)(y;Φ(q+λ ))r(x+ y−u)g(q+λ )(u)dudy

]

=
qΦ(q+λ )

Φ(q)

[∫
R

r(x+u)ĝ(q+λ )(u)du

+(Φ(q+λ )−Φ(q))
∫
R

∫
∞

0
H(q)(y;Φ(q+λ ))r(x+w)ĝ(q+λ )(w− y)dydw

]
=
∫
R

r(x+u)µλ
2 (du)

where

µ
λ
2 (du) :=

qΦ(q+λ )

Φ(q)

(
ĝ(q+λ )(u)+(Φ(q+λ )−Φ(q))( f (q) ? ĝ(q+λ ))(u)

)
du, u ∈ R,

with f (q)(u) := H(q)(u,Φ(q+λ ))1{u>0}.

Remark 4. Similar to Remark 2, both µλ
1 and µλ

2 are probability measures.

Proposition 4. When X is spectrally positive, the measures µλ
1 and µλ

2 converge
weakly to µ (defined by (32)) as λ → ∞.

Proof. Proof for Problem 1. In order to characterize the measure µλ we compute its
Laplace transform. To this end, for θ > Φ(q), using (19),∫

∞

0
e−θyZ(q)(y;Φ(q+λ ))dy

= λ

∫
∞

0
e−θy

∫
∞

y
e−Φ(q+λ )(u−y)W (q)(u)dudy

= λ

∫
∞

0
e−Φ(q+λ )uW (q)(u)

∫ u

0
e−(θ−Φ(q+λ ))ydydu

=
λ

Φ(q+λ )−θ

∫
∞

0
e−Φ(q+λ )uW (q)(u)

(
e(Φ(q+λ )−θ)u−1

)
du

=
λ

Φ(q+λ )−θ

(∫
∞

0
e−θuW (q)(u)du−

∫
∞

0
e−Φ(q+λ )uW (q)(u)du

)
=

λ +q−ψ(θ)

(Φ(q+λ )−θ)(ψ(θ)−q)
, (41)

and hence, again using (18),
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(Φ(q+λ )−Φ(q))
∫

∞

0
e−θyH(q)(y,Φ(q+λ ))dy

= (Φ(q+λ )−Φ(q))
λ +q−ψ(θ)

(Φ(q+λ )−θ)(ψ(θ)−q)
− λ

ψ(θ)−q

=
(q−ψ(θ))Φ(q+λ )− (λ +q−ψ(θ))Φ(q)+λθ

(ψ(θ)−q)(Φ(q+λ )−θ)
, (42)

which holds for any θ ≥ 0 by analytic continuation and is finite in view of Lemma
2(2). Thus,∫

[0,∞)
e−θy

[
δ0(dy)+1{y>0}(Φ(q+λ )−Φ(q))H(q)(y,Φ(q+λ ))dy

]
= 1+

(q−ψ(θ))Φ(q+λ )− (λ +q−ψ(θ))Φ(q)+λθ

(ψ(θ)−q)(Φ(q+λ )−θ)

=
(λ +q−ψ(θ))(θ −Φ(q))
(ψ(θ)−q)(Φ(q+λ )−θ)

.

Therefore,∫
[0,∞)

e−θy
µ

λ
1 (dy) =

λ +q−ψ(θ)

λ +q
Φ(q+λ )

Φ(q+λ )−θ

θ −Φ(q)
ψ(θ)−q

q
Φ(q)

, θ ≥ 0, (43)

which converges to (32) as λ→∞. By the continuity theorem, the weak convergence
holds.

Proof for Problem 2. Again let Ψ(θ) = −ψ(iθ) (where we recall ψ is for the
dual spectrally negative Lévy process Y =−X) and hence E[eiθY (s)] = e−Ψ(θ)s, θ ∈
R,s≥ 0.

We have∫
R

eiθyĝ(q+λ )(y)dy = E
[∫

∞

0
e−(q+λ )se−iθY (s)ds

]
=
∫

∞

0
e−(q+λ )se−Ψ(−θ)sds =

1
Ψ(−θ)+(q+λ )

. (44)

Because (42) also holds for θ = 0 and it is finite, by analytic continuation, we
obtain

(Φ(q+λ )−Φ(q))
∫

∞

0
eiθyH(q)(y,Φ(q+λ ))dy

=
(q+Ψ(−θ))Φ(q+λ )− (λ +q+Ψ(−θ))Φ(q)− iλθ

(−Ψ(−θ)−q)(Φ(q+λ )+ iθ)
.

Together with (44) and the convolution theory for Fourier transforms,



Lévy bandits under Poissonian decision times 21∫
R

eiθy
µ

λ
2 (dy)

=
qΦ(q+λ )

Φ(q)
1

Ψ(−θ)+(q+λ )

(
1+

(q+Ψ(−θ))Φ(q+λ )− (λ +q+Ψ(−θ))Φ(q)− iλθ

(−Ψ(−θ)−q)(Φ(q+λ )+ iθ)

)
=

iθ +Φ(q)
Φ(q)

q
Ψ(−θ)+q

Φ(q+λ )

Φ(q+λ )+ iθ
,

(45)

which converges as λ → ∞ to∫
[0,∞)

eiθy
µ(dy) =

q
Φ(q)

iθ +Φ(q)
Ψ(−θ)+q

,

matching (32) (with θ replaced by −iθ ). Therefore the continuity theorem shows
the weak convergence.

Remark 5. (1) For Problem 1, the Laplace transform (43) can be written∫
[0,∞)

e−θy
µ

λ
1 (dy) =

ϕ1(0,q,λ )
ϕ1(θ ,q,λ )

where ϕ1(θ ,q,λ ) :=
(ψ(θ)−q)(Φ(q+λ )−θ)

(λ +q−ψ(θ))(θ −Φ(q))
.

(2) For Problem 2, the Fourier transform (45) can be written∫
R

eiθy
µ

λ
2 (dy) =

ϕ2(0,q,λ )
ϕ2(θ ,q,λ )

where ϕ2(θ ,q,λ ) :=
(Ψ(−θ)+q)(Φ(q+λ )+ iθ)

iθ +Φ(q)
.

These can be seen as generalizations of (6).

Remark 6. The weak convergence as in Propositions 3 and 4 implies the conver-
gence of the Gittins index, if R(·) and r(·) are bounded and continuous in Problems
1 and 2, respectively.

6 Concluding remarks

In this paper, we studied an extension of the MAB driven by Lévy processes [8]
where decision opportunities arrive at Poisson arrival times. The Gittins index can
be written analogously to the classical case (15). In particular, we obtained explicitly
its form in terms of the scale function for the case of spectrally one-sided Lévy
processes and showed its convergence to those in [8] as the arrival rate increases to
infinity.

The studied problem is new to the best of our knowledge and there are several
venues for future research.

First, in the current paper, we did not discuss the optimality of the Gittins index
policy, and it is of great importance to analyze its near or exact optimality. The
convergence results obtained in Section 5 suggest that it is near optimal at least
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when λ is high. It is a non-trivial and crucial problem to investigate whether the
optimality remains to hold generally under the Poissonian decision times.

Second, one potential application of the considered problem is to approximate
the optimal solutions in the classical discrete-time model (in Section 2.1) in terms
of the Gittins index policy in the considered problem by approximating deterministic
decision times in terms of Poisson arrival times. This is related to Carr’s randomiza-
tion [4], where constant discrete decision times are approximated by Erlang random
variables, or the sum of independent exponential random variables. This approxi-
mation method is conjectured to be practical and accurate in view of the existing
related results in stochastic control such as [14].

Third, the obtained results are conjectured to hold for more general processes.
The convergence of our Gittins index to that in (15) is easily conjectured to hold
for a general Lévy process with two-sided jumps. In addition, the Gittins index may
admit an analytical expression written in terms of the Wiener-Hopf factorization,
even when the spectrally one-sided assumption is relaxed. It is also of great interest
to generalize the results to a more general Markov process with jumps by taking
advantage of the recent development of excursion theory such as [17].
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