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Abstract We consider a class of non-negative valued, time-changed spectrally
positive Lévy processes stopped whenever hitting 0, which can be identified as
continuous-state branching processes with population dependent branching rates.
Given the process comes down from infinity, we find expressions for Laplace trans-
form of the first passage time and for the potential measure for the process started
from infinity. Those expressions are in terms of the generalized scale functions for
the corresponding spectrally positive Lévy processes.

1 Introduction

Continuous-state branching processes (CSBPs for short) are non-negative valued
Markov processes satisfying the so called branching property, i.e. given two in-
dependent CSBPs with identical branching mechanism and initial values x and y,
respectively, the sum of the two processes is also a CSBP with initial value x+ y.
They are the continuous-state counterparts of the Bienaymé-Galton-Watson pro-
cesses. We refer to Kyprianou [9] and Li [14] for introductions on CSBPs.

In Li [13] a class of nonlinear CSBPs with power branching rate functions is
introduced as solutions to the associated SDEs driven by spectrally positive Lévy
processes (SPLPs for short). Nonlinear CSBPs with more general rate functions are
introduced in Foucart et al. [7] by time-changing spectrally positive Lévy processes
via Lamperti type transforms. The criteria for coming down from infinity and the
speed of coming down from infinity for such nonlinear CSBPs are obtained in [7].
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Foucart et al. [6] further show that such a process can be extended to a [0,∞]-values
Markov process started from ∞. We refer to Bansaye et al. [1] for previous work on
the speed of coming down from infinity for birth and death processes.

The Lamperti type transform allows to express the interested quantities of non-
linear CSBP in terms of the associated SPLP that often involves functional integral
of the SPLP. As a result, one can study the nonlinear CSBPs using fluctuation theory
for spectrally one-sided Lévy processes. In this note, we adopt the above approach
to further derive some expressions for nonlinear CSBPs that come down from in-
finity. More precisely, for the process started at ∞ and coming down from ∞, we
find expressions for the Laplace transform of the first passage time and for the po-
tential measure where those expressions are in terms of generalized scale functions
for SPLPs. These quantities also characterize the entrance law for the associated
[0,∞)-valued nonlinear CSBP. We also obtain expressions on the moments of the
total progeny for the nonlinear CSBP.

In Section 2 we introduce the needed fluctuation results for SPLP, the definition
of nonlinear CSBP using Lamperti transform on SPLP and some previous results
on nonlinear CSBPs and the coming down from infinity. The main results and their
proofs are presented in Section 3.

2 Spectrally positive Lévy processes and continuous-state
nonlinear branching processes

2.1 Spectrally positive Lévy processes

Let ξ be a spectrally positive Lévy process, that is, a stochastic process with station-
ary and independent increments and without negative jumps defined on a filtered
probability space (Ω ,F ,(Ft)t≥0,P). The law of ξ for ξ0 = x is denoted by Px and
the corresponding expectation by Ex. We write P and E when x = 0. The Laplace
component of ξ is well defined and takes the Lévy-Khintchine form, for every θ ≥ 0

ψ(θ) := logE
[
e−θξ1

]
= γθ +

σ2

2
θ

2 +
∫

∞

0

(
e−θz −1+θz

)
π(dz), (1)

where γ ∈ R,σ ≥ 0 are constants and π is a σ -finite measure on (0,∞) with
∫

∞

0 z∧
z2ν(dz) < ∞. We exclude the case ξ being a subordinator. It is well-known that ψ

in (1) is continuous and strictly convex on [0,∞) with −ψ ′(0) =E[ξ (1)] =−γ < ∞.
Its right inverse is defined by

φ(s) := sup{θ ≥ 0 : ψ(θ) = s} for s ≥ 0.

In the fluctuation theory of spectrally negative Lévy processes, the following
scale functions W (q) plays a key role, which is defined as the unique continuous and
increasing function on [0,∞) satisfying
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∞

0
e−syW (q)(y)dy =

1
ψ(s)−q

for s > φ(q) and q ≥ 0, (2)

with extension W (q)(x) = 0 for x < 0. We write W (x)≡W (0)(x) for q = 0 and refer
the readers to [2] and [9] for more detailed discussions on the spectrally negative
Lévy process and its scale functions. We also call W (q) the scale function of SPLP
ξ for the obvious reason.

Define the first passage times of ξ by

τ
+
b := inf{t ≥ 0 : ξt > b} and τ

−
a := inf{t ≥ 0 : ξt < a}

with the convention inf /0 = ∞. Then the potential measure of ξ killed upon leaving
[a,b] is given by

Θ
(q)(x,dy) :=

∫
∞

0
e−qtPx

(
ξt ∈ dy; t < τ

−
a ∧ τ

+
b

)
dt

=
(W (q)(b− x)

W (q)(b−a)
W (q)(y−a)−W (q)(y− x)

)
dy

(3)

for x,y ∈ (a,b).
Let ω be a nonnegative locally bounded Borel function and define the functional

η(t) :=
∫ t

0
ω(ξs)ds

which is called ω-weighted occupation time in Li and Palmowski [10]. We will need
the following result on potential measure for process ξ .

Lemma 1 ([10] Theorem.2.2). For b > x,y > a, we have

Θ
(ω)(x,dy) =

∫
∞

0
Ex

[
e−η(t); t ≤ τ

−
a ∧ τ

+
b ,ξt ∈ dy

]
dt

=
(W (ω)(b,x)

W (ω)(b,a)
W (ω)(y,a)−W (ω)(y,x)

)
dy

where W (ω)(x,y) is defined as the unique locally bounded function satisfying

W (ω)(x,y) =W (x− y)+
∫ x

y
W (ω)(x,z)ω(z)W (z− x)dz. (4)

Remark 1. The ω-weighted scale function W (ω) defined above extends the classical
scale function in (3) with W (ω)(x,x) = W (0) and W (ω)(x,y) = 0 if x < y. One can
show that if ω ≡ q, then W (ω)(x,y) =W (q)(x− y) for all x,y ∈ R and Θ (ω) =Θ (q)

as expected.
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2.2 Time-changed SPLP and nonlinear CSBP

In this paper, we are interested in the following time-changed SPLP taking values
on [0,∞)

X(t) := ξ
(
η
−1(t)∧ τ

−
0
)
, (5)

stopped at time ζ = η(τ−0 ) ∈ [0,∞] with absorbing states 0 and ∞, where

η(t) :=
∫ t

0
ω(ξs)ds =

∫ t

0

ds
R(ξs)

for t < τ
−
0 and η

−1(s) := inf{t ≥ 0 : η(t)> s}

(6)
and R(z) := 1

ω(z) is a positive and continuous function on (0,∞). The Laplace expo-
nent ψ for ξ is called the branching mechanism for X and R is called the branching
rate function. Since X is obtained by time-changing SPLP ξ , it is defined on the
same probability space as ξ with X(0) = ξ (0), and Px can also be understood as the
law of X with X(0) = x.

The time-changed SPLP defined above is also referred to as the Lamperti-type
transformed process. It is well known that, when the function R is the identity func-
tion, X reduces to the CSBP with Ψ being the branching mechanism, and if R is
an exponential function, X is related to a positive self-similar Markov process. The
two transforms are called the classical Lamperti transformations in the literatures;
see e.g. [9, 4].

The above positive Markov process X in (5) can also be characterized as the
solution to SDE

X(t) = x− γ

∫ t

0
R(Xs)ds+σ

∫ t

0

√
R(Xs)dBs +

∫ t

0

∫
∞

0

∫ R(Xs−)

0
zÑ(ds,dz,du), (7)

where B is a standard Brownian motion and {Ñ(ds,dz,du)}s,z,u>0 is an independent
compensated Poisson random measure on (0,∞)3 with intensity dsν(dz)du, where
ν is a nonnegative σ -finite measure on (0,∞) such that

∫
∞

0 (z∧ z2)ν(dz)< ∞, com-
paring with ψ in (1). For the above stochastic differential equation to have a unique
solution, we need additional technical assumptions such as R(·) is locally Lipschitz
on (0,∞).

Processes of this type are first introduced in [13], for power functions R, as non-
linear CSBPs that describe the evolution of populations whose reproduction rates
are power functions of the population sizes instead of the identity function for the
classical CSBP; also see [7] for nonlinear CSBPs with more general rate functions.

For the main result in the note we need the following Laplace transforms on
downward first passage times, also see [7] for related results, where the first passage
time of X is defined by

T−
a := inf{t ≥ 0,Xt < a}

with the convention inf /0 = ∞.

Lemma 2 ([12] Lemma.4.4). If
∫

∞ Wφ(0)(x)
R(x)

dx < ∞, then for x > a > 0
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Ex

[
e−T−

a
]
=

H(ω)(x)
H(ω)(a)

(8)

where H(ω)(x) is defined as the unique decreasing function satisfying

H(ω)(x) := lim
b→∞

W (ω)(b,x)
W (b)

= e−φ(0)x +
∫

∞

x
H(ω)(z)ω(z)W (z− x)dz. (9)

Remark 2. By the definition of X in (5), the locally boundedness assumption on ω

in Lemma 2 ensures the finiteness of T−
a on the set {τ−a < ∞}. By the absence of

negative jumps, there always exists some function H(ω) so that the ratio identity (8)
holds for all x > a > 0.

The condition
∫

∞

Wφ(0)(x)ω(x)dx < ∞ enables us to derive a proper integral

equation for H(ω) in (9), and whose solution can be expressed as the following
infinite sum of integrals

H(ω)(x) = e−φ(0)x
(

1+
∫

z>x
ω(z)Wφ(0)(z− x)dz

+
∫∫

z2>z1>x
ω(z2)ω(z1)Wφ(0)(z2 − z1)Wφ(0)(z1 − x)dz1dz2 + · · ·

)
.

On the other hand, if
∫

∞

Wφ(0)(z)ω(z)dz = ∞, then lim
b→∞

W (ω)(b,x)
W (b)

= ∞. Therefore,

the introduction of appropriate H(ω) is more involved and the associated integral
equation can be different. We thus consider the following two examples to illustrate
this.

If ω(z) =
1

z+a
for some a ≥ 0, then H(ω) in (9) solves a singular integral equa-

tion

H(ω)(x) := lim
b→∞

W (ω)(b,x)
W (b)

=
∫

∞

x
H(ω)(z)

W (z− x)
z+a

dz,

whose solution can be expressed, similar to [5], as

H(ω)(x) :=
∫

∞

φ(0)
e−(x+a)y exp

(∫ y

φ(0)+1

dz
ψ(z)

) dy
ψ(y)

, ∀x > 0.

However, if
∫

∞

Wφ(q)(x)
∣∣ω(x)−q

∣∣dx <∞ for some ω and q> 0, then one would

expect the following equation from [10, equation (2.3)] and [11, Lem.4.3]

W (ω)(x,y) =W (q)(x− y)+
∫ x

y
W (ω)(x,z)

(
ω(z)−q

)
W (q)(z− y)dz,

and H(ω) can be defined as a limit that solves equation
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H(ω)(x) := lim
b→∞

W (ω)(b,x)
W (q)(b)

= e−φ(q)x +
∫

∞

x
H(ω)(z)(ω(z)−q)W (q)(z− x)dz,

which can be further expressed as an infinite sum of integrals.

Remark 3. If we assume ω(z) =
∫

∞

0 e−zxµ(dx) for some positive measure µ on
(0,∞) such that∫

∞ Wφ(0)(x)
R(x)

dx ≍
∫

∞

a

Wφ(0)(x)
R(x+a)

dx =
∫

∞

0+
e−at µ(dt)

ψφ(0)(t)
≍

∫
0+

µ(dt)
ψφ(0)(t)

< ∞,

then H(ω)(x) =
∫

∞

0 e−xyν(dy) for some positive measure ν on [φ(0),∞) so that

ν(ds) = δ{φ(0)}(ds)+
ν ∗µ(ds)

ψ(s)
for s ≥ φ(0),

where δ denotes the delta measure and ν ∗µ denotes the convolution of ν and µ .

2.3 Nonlinear CSBPs coming down from infinity

By saying a stochastic process comes down from infinity, we mean intuitively that
the process drops dramatically within arbitrary short time when initiated from a very
high level. The following definitions can be found in [8] and in recent papers [13, 6].

Definition 1. Let (Yt , t ≥ 0) be a positive Markov process. The boundary ∞ is an
instantaneous entrance boundary for the process Y if the process does not explode
and

∀t > 0, lim
a→∞

liminf
x→∞

Px
(
S−a ≤ t

)
= 1,

where S−x := inf{t > 0,Y (t)< x} denotes the first downcrossing time of Y .

If a strong Markov process comes down from infinity in the above sense, it is
natural to extend the state space and define the process starting at ∞. Kallenberg
[8] considers such an extension for regular diffusions. For positive-valued strong
Markov processes with no negative jumps, besides some equivalent conditions [6,
Lem.1.2.] for the entrance boundary, the following results for Markov process com-
ing down from infinity are also shown in the paper, see also [13] and references there
in. Recalling that for a positive Markov process Y , its Markov semigroup

(
Pt , t ≥ 0

)
is a family of linear operators on L∞(R+) indexed by t ≥ 0 and given by, c.f. [2, I.2]

Pt f (x) = Ex
[

f (Yt)
]
=

∫
∞

0
f (y)Px(Yt ∈ dy).

Definition 2 (Cb-Feller property). For E = [0,∞) or [0,∞], a semigroup
(
Pt , t ≥ 0

)
satisfies the Feller property if
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(i) for any f ∈Cb(E), x → Pt f (x) ∈Cb(E) for every t ≥ 0,
(ii) for any f ∈Cb(E) and x ∈ E, Pt f (x)→ f (x), as t → 0,

where Cb(E) denotes the space of bounded continuous functions on E. A Markov
process Y on E is called a Feller process if its transition group satisfies the Feller
property.

Lemma 3 ([6] Theorem 2.2). Let Y be a non-explosive Markov process taking val-
ues in [0,∞) with no negative jumps, satisfying the Feller property and with an
entrance boundary at ∞, in the sense of Definitions 1 and 2, respectively. Then Y
can be extended to a Feller process valued in [0,∞] such that under P∞, it starts
from ∞, leaves from it instantaneously and stays finite almost-surely:

P∞

(
Y0 = ∞

)
= 1 and P∞

(
∀t > 0,Yt < ∞

)
= 1.

Lemma 4 ([6] Theorem 2.5). Assume that Y is a Feller process on [0,∞]. Let Y (x)

be the Markov process started from x ∈ [0,∞] with càdlàg sample paths. Then the
family of processes

(
Y (x)

)
x∈[0,∞)

converges weakly, in the Skorohod topology, as

x → ∞ towards Y (∞).

Lemma 3 shows the convergence of semigroups, that is,

Pt f (x)→ Pt f (∞) = E∞

[
f (Xt)

]
as x → ∞ for every f ∈ Cb[0,∞) to some probability measures

(
P∞(t,dy))t>0 on

[0,∞). Lemma 4 deals with the convergence of processes as elements in cádlág
space. As far as the convergence of stopping times is concerned, the following useful
regularity property of the first passage times under the probability measures

(
Px
)

x≥0
is also proved in the above mentioned papers.

Lemma 5 ([6] Proposition 2.4). Suppose that the conditions in Lemma 3 hold. Let
h ∈Cb[0,∞) be bounded or nonnegative increasing. Then

(a) for any θ > 0, there exists bθ > 0 such that for all b ≥ bθ ,E∞

[
eθS−b

]
< ∞;

(b) for any b > 0, if S−b < ∞, P∞-a.s. and E∞

[
h(S−b )

]
< ∞, then

Ex
[
h(S−b )

]
→ E∞

[
h(S−b )

]
, as x → ∞.

For the time-changed SPLP X in (5), the Feller property as well as the necessary
and sufficient condition for the process to come down from infinity has been shown
in [7].

Lemma 6 ([7] Proposition 2.1). Assume that function R is strictly positive and con-
tinuous function on (0,∞), and ξ is a spectrally positive Lévy process. Then for any
x> 0 and t ∈ [0,τ−0 ), we have η(t)<∞ Px-a.s. The process X is well-defined, strong
Markov and with cádlág paths, whose semigroup

(
Pt , t ≥ 0

)
satisfies the Feller prop-

erty.
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Lemma 7 ([7] Theorem 3.1). Assume that E[−ξ1] ≥ 0. The boundary ∞ is an in-
stantaneous entrance boundary for the process X in the sense of Definition 1 if and
only if ∫

∞ 1
xψ(1/x)R(x)

dx < ∞.

Moreover, E∞

[
Tb
]
=

∫
∞

b
W (x−b)

R(x) dx for the measure P∞ in Lemma 3.

Since W (x) ≍ 1
xψ(1/x) by Proposition VII.10 in [2], the above integral condition

is equivalent to ∫
∞ W (x)

R(x)
dx < ∞.

3 Main results

In this note we take use of the results from [6, 7] to compute quantities related to X
that starts from infinity and comes down from infinity. Therefore, for the rest of the
note we always assume that the conditions in Lemma 7 hold, that is, the following
assumption holds.

Assumption H: −E[ξ1] ≥ 0, R is a strictly positive, continuous function on (0,∞)
and ∫

∞ 1
xψ(1/x)R(x)

dx ≍
∫

∞ W (x)
R(x)

dx =
∫

∞

ω(z)W (z)dz < ∞.

Under the above assumption, φ(0) = 0 and H(ω) in Lemma 2 is the unique de-
creasing solution to equation

H(ω)(x) = 1+
∫

∞

x
H(ω)(z)ω(z)W (z− x)dz,

which converges to 1 as x → ∞.

Theorem 1. Under Assumption H we have for any q,a > 0, T−
a < ∞ P∞-a.s. and

E∞

[
e−qT−

a
]
=
(

H(qω)(a)
)−1

.

In addition, the resolvent measure of X is

U (q)
a (∞,dy) :=

∫
∞

0
e−qtP∞

(
Xt ∈ dy, t ≤ T−

a
)

dt = ω(y)
W (qω)(y,a)
H(qω)(a)

dy.

Proof. It follows from Assumption H that T−
a < ∞ P∞-a.s. Applying Lemma 5 (b)

to Lemma 2 directly with weight function qω and noticing that φ(0) = 0, we obtain
the Laplace transform for T−

a .
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For the resolvent measure of X , notice that for every f ∈Cb[0,∞) we have from
Lemma 1 ∫

∞

0
e−qtEx

[
f (X(t)); t ≤ T−

a ∧T+
b

]
dt

=
∫

∞

0
Ex

[
e−qη(s)

ω(ξs) f (ξ (s));s ≤ τ
−
a ∧ τ

+
b

]
dt

=
∫ b

a
f (y)ω(y)

(W (qω)(b,x)
W (qω)(b,a)

W (qω)(y,a)−W (qω)(y,x)
)

dy.

Letting b → ∞ first and then x → ∞, we have

U (q)
a f (x) :=

∫
∞

0
e−qtEx

[
f (Xt); t ≤ T−

a
]
dt

=
∫

∞

a
f (y)ω(y)

(H(qω)(x)
H(qω)(a)

W (qω)(y,a)−W (qω)(y,x)
)

dy

→
∫

∞

a
f (y)ω(y)

W (qω)(y,a)
H(qω)(a)

dy.

Thus, as a function of x, U (q)
a f (x) has a limit as x → ∞.

On the other hand, to give a probabilistic interpretation of the limit of U (q)
a f (x).

Let eq be an exponential random variable with parameter q > 0 independent of X .
For every fixed t > 0, applying the Markov property of X and the memoryless prop-
erty of eq at t under Px, we have for x ∈ (0,∞)

qU (q)
a f (x) =Ex

[
f
(
X(eq)

)
;eq ≤ T−

a

]
=e−qtEx

[
U (q)

a f (Xt); t ≤ T−
a

]
+Ex

[
f
(
X(eq)

)
;eq < T−

a ∧ t
]
.

(10)

Applying Lemma 3 to the first term above, for the Feller semigroup of
(
Px(Xs ∈

dy,s < T−
a ),s ≥ 0

)
and function U (q)

a f ∈Cb[0,∞), we have as x → ∞

e−qtEx

[
U (q)

a f (Xt); t ≤ T−
a

]
→ e−qtE∞

[
U (q)

a f (Xt); t ≤ T−
a

]
= E∞

[
f
(
X(eq)

)
;eq ≤ T−

a

]
−E∞

[
f
(
X(eq)

)
;eq < T−

a ∧ t
]
.

For the second term in (10), by the boundedness of f and Lemma 5 we have

limsup
x→∞

Ex

[
f
(
X(eq)

)
;eq < T−

a ∧ t
]
≤ || f ||∞ · limsup

x→∞

Px
(
eq < T−

a ∧ t
)

= || f ||∞ · lim
x→∞

Ex
[
1− e−q(T−

a ∧t)]= || f ||∞ ·E∞

[
1− e−q(T−

a ∧t)].
Finally, letting t → 0 gives
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lim
x→∞

Ex

[
f
(
X(eq)

)
;eq ≤ T−

a

]
= E∞

[
f
(
X(eq)

)
;eq ≤ T−

a

]
and this finishes the proof. ⊓⊔

Recall the total progeny until time t ≥ 0

J(t) :=
∫ t

0
X(s)ds

defined in [9, Sec.12.2.3.]. Note that T−
a = η(τ−a )< ∞. By a change of variable, we

have

J(T−
a ) =

∫
η(τ−a )

0
ξ
(
η
−1(t)

)
dt =

∫
τ−a

0
ξ (s)η(ds) =

∫
τ−a

0

ξ (s)
R(ξ (s))

ds.

Applying Theorem 1, we have the following Laplace transform.

Corollary 1. If Assumption H holds with R(x) replaced by R(x)/x, then we have
J(T−

a )< ∞ P∞-a.s. and for ω∗(x) := xω(x),

E∞

[
e−qJ(T−

a )
]
=
(

H(qω∗)(a)
)−1

.

We can also derive the moments for J(T−
a ).

Theorem 2. Under Assumption H, for every a > 0 denote by

ma,0 = 1 and ma,n := E∞

[
(T−

a )n]
the nth moment of T−

a under P∞. Then {ma,n}n≥1 satisfies equation

ma,n = n!
n

∑
k=1

(−1)k−1akma,n−k = n!
n−1

∑
k=0

(−1)n−k−1ma,kan−k, (11)

where the sequence (an)n≥1 is defined by a1 :=
∫

∞

a
W (x−a)

R(x) dx and

an :=
∫∫

xn>xn−1>···>x1>a

W (xn − xn−1)W (xn−1 − xn−2) · · ·W (x1 −a)
R(xn)R(xn−1) · · ·R(x1)

dxn · · ·dx1

that are finite for every a > 0 and n ≥ 1.

Proof. Fix a > 0. Under Assumption H, the following functions are well-defined
for n ∈ N.

f0(x) = 1 and fn(x) =
∫

∞

x
fn−1(z)

W (z− x)
R(z)

dz. (12)

Then we have from [3, Lem.8.11.1.] (see also [12, Prop.4.7.]) that
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ma,n(x) := Ex

[(
T−

a
)n;T−

a < ∞

]
= n

∫
∞

a

ma,n−1(y)
R(y)

(
W (y−a)−W (y− x)

)
dy

= n
(∫

∞

a
ma,n−1(y)

W (y−a)
R(y)

dy−
∫

∞

x
ma,n−1(y)

W (y− x)
R(y)

dy
)

(13)
for the moments of T+

a under Px and again the finiteness assumption from H. One
can check from the identity that for n ∈ N and x > a

ma,n(x)≤ n!
(∫

∞

a

W (y−a)
R(y)

dy
)n

.

Given the identity (13) and fn(x) defined in (12), one can also prove by induction
on n that the moments ma,n can be written as

ma,n(x) = n!
n

∑
k=0

(−1)k fk(x) · cn,k (14)

for some constant array {cn,k,k = 0, · · · ,n}n≥0. Plugging (14) into (13) and then
applying (12), we have

ma,n+1(x)
(n+1)!

=
n

∑
k=0

(−1)kcn,k

(∫
∞

a
fk(z)

W (z−a)
R(z)

dz−
∫

∞

x
fk(z)

W (z− x)
R(z)

dz
)

=
n

∑
k=0

(−1)kcn,k
(

fk+1(a)− fk+1(x)
)
.

(15)

Comparing (14) with (15) we have c0,0 = 1 for n ∈ N

cn,0 =
n

∑
k=1

(−1)k−1 fk(a)cn−1,k−1 and cn,k = cn−1,k−1.

Therefore, letting x → ∞ in (13) and applying Lemma 5 (b), we have

ma,n = lim
x→∞

ma,n(x) = n! · cn,0 = n!
n

∑
k=1

(−1)k−1akma,n−k.

This finishes the proof. ⊓⊔

Remark 4. If ω(z) = R−1(z) = µ̂(z) for some measure µ on (0,∞) as described in
Remark 3, one can have from (12) in the proof that

f1(x) =
∫

∞

x
dz

∫
∞

0
e−zyW (z− x)µ(dy) =

∫
∞

0

e−xy

ψ(y)
µ(dy)

and then by induction on n,

fn(x) =
∫∫

y1<y2<···<yn

e−xyn
µ(dy1)µ(dy2 − y1) · · ·µ(dyn − yn−1)

ψ(y1)ψ(y2) · · ·ψ(yn)
.
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In particular, if R(x) = e−λx for some λ > 0, then µ(dz) = δλ (dz) for delta measure
δλ . We have

an = fn(a) = e−naλ
n

∏
k=1

1
ψ(kλ )

for n ≥ 1.

If ψ(x) = xα and R(x) = xβ for some β > α > 1, then µ(dz) = zβ−1

Γ (β ) dz and

an = fn(a) = an(α−β )
n

∏
k=1

Γ (k(β −α))

Γ
(
k(β −α)+α)

for n ≥ 1.
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