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Abstract The matrix sequential probability ratio test (MSPRT) is a statistical
method to decide which law governs a collection of independent and identically
distributed data amongst a finite set of possibilities. By focusing on the case where
the possible laws are exponentially tilted versions of each other, in this note we ex-
hibit novel links between the MSPRT and multivariate risk processes with common
shocks, as well as with one-dimensional renewal theory.

1 Introduction

The celebrated sequential probability ratio test (SPRT) developed in [8] is an ef-
ficient tool to identify the nature of a collection of i.i.d. observations employing
only a finite subset of data points whose cardinality is random. More specifically,
for an independent and identically distributed (i.i.d.) sequence {X`}`≥1 with density
f , one tests the null hypothesis H0 = { f = f0} against the alternative hypothesis
H1 = { f = f1}, where f0 and f1 are given density functions. The decision rule asso-
ciated to the SPRT is based on employing the likelihood ratio of the first T observa-
tions, say Λ (T ) for Λ (k) := ∏

k
`=1 f0(X`)/ f1(X`), where T corresponds to the number

of observations it takes {Λ (k)}k≥1 to exit the strip (a,b), 0 < a < 1 < b < ∞. In par-
ticular, the null hypothesis H0 is rejected if and only if Λ (T ) ≤ a, with corresponding
errors

α0 := P(reject H0 | H0) and α1 := P(do not reject H0 | H1)
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that depend on a and b.
Although the SPRT is a well-established method which in practice produces ef-

ficient results in terms of the number T of observations needed, in the general case
it is difficult to obtain constants a,b that precisely yield prescribed errors α0 and
α1; in most cases only bounds exist (see e.g. [9]). In [1], the authors established
exact boundaries (a,b) for the prescribed errors for the case f0 follows a phase-type
distribution and f1 is an exponentially-tilted transform of f0. To do so, the authors
follow a probabilistic approach based on establishing a link between the SPRT and
certain Markov additive risk processes and their exit probabilities. The theory of
scale functions developed in [7] was then used to compute α0 and α1, as well as the
expected amount of observations needed, E(T ).

In this paper, we are interested in establishing novel geometric considerations for
the matrix sequential probability ratio test (MSPRT) as defined in [5], an extension
of the SPRT that allows for multiple hypotheses. Similarly to [1], we focus on the
case where the candidate densities are exponentially-tilted transforms of some fixed
function. This allows us to redefine the decision rule associated to the MSPRT in
terms of exit times of a multivariate risk process with common shocks. An additional
transformation resets the problem in terms of a one-dimensional renewal process
and its exit time from a region that varies in time. While both problems are, at
the moment, not tractable in the ruin theory and applied probability literature, our
geometric approach elucidates avenues of research within these disciplines that can
yield powerful results for the MSPRT.

The structure of this paper is as follows. In Section 2, we provide a brief intro-
duction of the MSPRT and its properties. In Section 3, we specialize onto the case
of multiple hypothesis testing for exponentially-tilted versions of each other, which
will allow to draw novel risk- and renewal-theoretical perpectives on the MSPRT.
In Section 4 we provide some synthetic examples that illustrate the performance of
the MSPRT in the case of exponentially-tilted hypotheses. We finalize in Section
5 by summarizing our findings and pointing out some potential avenues for further
resarch.

2 The Matrix Sequential Probability Ratio Test

In a probability space (Ω ,P,F ), suppose that we have a sequence of identically
distributed random variables {X`}`≥1 and a collection of events that partition Ω ,
say {Hi}i∈Θ with i ∈Θ = {1, . . . ,M}, where

Hi = {X` ∼ Fi for all `≥ 1},

and each Fi corresponding to a pre-specified distribution function. Furthermore, sup-
pose that conditional on each event Hi, the random variables {X`}`≥1 are indepen-
dent. The previous corresponds to the classical Bayesian setting for multiple hypoth-
esis testing. Given a realization of the random variables {X`}`≥1, the main goal of
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multiple hypothesis testing is to choose the event Hi which is the most likely, given
the observed sequence.

Let Pi be the probability measure conditioned on the hypothesis Hi. Here we
assume that Pi and P j are equivalent measures for all i, j ∈Θ , in the sense that the
Radon-Nikodym derivative dPi/dP exists and is P-a.e. positive. This is equivalent
to assuming the existence of a reference measure ν on (−∞,∞) and ν-integrable
positive functions f1, f2, . . . , fM , which share the same support, such that

Fi(x) =
∫
(−∞,x]

fi(y)dν(y), x ∈ (−∞,∞), i ∈Θ .

For the set of observations {X`}, here we are interested in a method that, within
some prespecified error bounds, allows us to reach a consensus w.r.t. the possible
events {Hi}i∈Θ , using a finite amount of observations only. The matrix sequential
probability ratio test (MSPRT), constructed in [5], produces a pair (d,T ) where
T ≥ 1 is an Fn-stopping time associated to the number of observations needed,
and d is an FT -measurable function taking values in Θ associated to the hypothe-
sis that is the most likely. In the previous, Fn denotes the σ -algebra generated by
X1,X2, . . . ,Xn, while FT is the σ -algebra generated by X1, . . . ,XT .

For the MSPRT, one of the aims is to get small error probabilities

αi j = Pi(d = j), i 6= j, (1)

as well as a “small” stopping time T . To properly specify what we mean by this,
define the n-th step likelihood function

Λ
(n)
i :=

dPi

dν

∣∣∣∣
Fn

({X`}`≥1) =
n

∏
`=1

fi(X`). (2)

Then (d,T ) corresponding to the MSPRT in [5] takes the form

T = min
i∈Θ
{Ti} where Ti = inf

{
n≥ 1 : Λ

(n)
i ≥ Ai

(
Λ

(n)
1 , · · · ,Λ (n)

i−1,Λ
(n)
i+1, . . . ,Λ

(n)
M

)}
,

(3)

d = argmin
i∈Θ

{Ti}, (4)

for some collection of deterministic functions Ai : RM−1 7→R, i ∈Θ . The choice for
the collection of functions Ai will impact the risk associated to making the decision
i, here defined by

Ri(d,T ) = ∑
j 6=i

π jα ji with π j = P(H j),

as well as on the expected number of observations until a decision is met, E(T ). In
fact, in [5] it is shown that Ai(·) can be chosen to be of the form
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Ai(x1, . . . ,xi−1,xi+1, . . . ,xM) =
M
ρi

max
j 6=i

π jx j for some fixed ρi > 0, (5)

and such a choice yields a risk for the decision i which is lower than ρi, i.e.
Ri(d,T )≤ ρi.

While the choice (5) does not yield the lowest expected number of observations
for a predetermined level of risk ρi, it is a tractable option which still produces an
optimal decision in an asymptotic sense. More specifically, let ρρρ = (ρ1,ρ2, . . . ,ρM)
be a vector with positive entries. We then consider the class of tests ∆∆∆(ρρρ) with

∆∆∆(ρρρ) = {(c,S) : Ri(c,S)≤ ρi for all i ∈Θ},

where the set on the r.h.s. spans over all pairs (c,S) defined analogously as (d,T )
was defined in (3) and (4) for arbitrary measurable functions Ai.

Theorem 1 ([5]). Let ρρρ ↓ 0 denote the instance when the elements of ρρρ uniformly
tend to 0 while mantaining the asymptotic relationship

logρi

logρ j
→ ci j, 0 < ci j < ∞.

Then,

inf
(c,S)∈∆∆∆(ρρρ)

Ei(Sm) = Ei(T m)(1+o(1)),

where o(1) denotes some generic real function which converges to 0 as ρρρ ↓ 0.

Theorem 1 essentially implies that, amongst all the tests which yield risks which
are below a prespecified vector ρρρ , (d,T ) with Ai defined as in (5) enjoys asymptotic
optimality w.r.t. the moments of T as the entries of ρρρ tend to 0. Due to this and its
simplicity, in practice it is common to employ the MSRPT with the test (d,T ), even
if it is not optimal in a non-asymptotic sense. From now on, whenever we refer to
the MSPRT test (d,T ), it will be understood that it is the one defined by (5).

3 MSPRT for exponential tilting

In this section, we look at a special type of MSPRT, where the collection of hy-
potheses corresponds to distributions which are all exponentially tilted versions of
some reference probability measure. More specifically, suppose that there exists a
distribution function taking the form

F(x) =
∫
(−∞,x]

f (y)dν(y), x ∈ (−∞,∞) (6)

for some nonnegative measurable function f , and a collection of real numbers
{γi}i∈Θ such that fi(x) =

eγix f (x)
L(γi)

, where L(γi) =
∫

eγis f (s)dν(s) is assumed to be
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finite for all i ∈Θ . Under these particular circumstances, the n-th step likelihood
function takes the form

Λ
(n)
i :=

n

∏
`=1

eγiX`

L(γi)
. (7)

Transforming (7) by taking logarithms leads us to an equivalent definition to (3),

Ti = inf
{

n≥ 1 : λ
(n)
i ≥ logM/ρi +max

j 6=i

{
logπ j +λ

(n)
j

}}
where

λ
(n)
i := logΛ

(n)
i = γiX`− logL(γi).

3.1 Links to multivariate risk processes

From now on, let us assume that f has support in (0,∞), i.e. X` > 0 a.s. for all
` ≥ 1, and w.l.o.g. suppose that γ1 < γ2 < · · · < γM . Let {N(t)}t≥0 be the re-
newal process whose interarrival times are {X`}`≥1. A key aspect of this paper
is to notice that the stopping time Ti corresponds to the minimum number of ar-
rivals of {N(t)}t≥0 needed so that the i-th row of the multidimensional array process
YYY (t) = {Yi j(t)}i, j∈Θ of the form

Yi j(t) = (γi− γ j)t−
N(t)

∑
`=1

(logL(γi)− logL(γ j))

is simultaneously above certain boundaries. More precisely, Ti can be expressed as

Ti = inf
{
`≥ 1 : Yi j(W`)≥ bi j for all j 6= i

}
,

where Wn = ∑
n
`=1 X` and bi j = logM/ρi + logπ j. Examining each of the processes

{Yi j(t)}t≥0 for all i, j ∈Θ , we get:

• In the case i > j, {Yi j(t)}t≥0 corresponds to a process that increases linearly
with slope γi− γ j and has negative jumps of size (logL(γi)− logL(γ j)) at the
arrival times of {N(t)}; this can be regarded as a Sparre-Andersen model with
deterministic jump sizes (cf. [1]).

• In the case i < j, {Yi j(t)}t≥0 decreases linearly with slope γi−γ j and has positive
jumps of size (logL(γi)− logL(γ j)) instead; this can be also be regarded as a
Sparre-Andersen model, but flipped along the x-axis.

• The case i = j simply yields {Yi j(t)}t≥0 to be the zero process.

This elucidates a novel risk-theoretic understanding of the MSPRT, for the exponen-
tially tilted case, in terms of risk processes (classical and flipped) and their upcross-
ing probabilities at the epochs {S`}`≥0. In case we want to link the MSPRT to the
continuous upcrossing probabilities (as opposed to the discretely observed ones),
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we can define

b∗i j =

 bi j if i < j,
bi j +(logL(γi)− logL(γ j)) if i > j,

0 if i = j.

In this case, it can be readily verified that

Ti = inf
{
`≥ 1 : for some s ∈ [0,W`], Zi j(s)≥ (γi− γ j)

−1b∗i j for all j ∈ θ
}
, i∈Θ .

For geometric considerations, it is convenient to normalize the processes Yi j to
move linearly at a positive unit rate. Thus, we define the Sparre-Andersen processes

Zi j(t) =
Yi j

γi− γ j
= t−

N(t)

∑
`

logL(γi)− logL(γ j)

γi− γ j
, i 6= j. (8)

Given that γi− γ j > 0 if and only if i > j, then the stopping rule for the i-th hypoth-
esis becomes

Ti = inf
{
`≥ 1 : Zi j(W`)≥ ci j for all j < i and Zi j(W`)≤ ci j for all j > i

}
(9)

= inf
{
`≥ 1 :

for some s ∈ [0,S`], Zi j(s)≥ c∗i j for all j < i
and Zi j(s)≤ c∗i j for all j > i

}
,

where ci j = (γi− γ j)
−1bi j and c∗i j = (γi− γ j)

−1b∗i j. Then Ti can be seen to corre-
spond to the simultaneous hitting time of a multivariate Sparre-Andersen process
with common shocks.

Remark 1. In the case that f1, . . . , fM are all exponential density functions, the pro-
cesses will be linked to Cramér-Lundberg processes with common shocks, and
moreover, with jumps that are constant. In fact, the resulting multivariate process is
a subclass of the risk models considered in [4], where the authors present a multidi-
mensional Cramér-Lundberg process with simultaneous arrivals and ordered claim
sizes. Unfortunately, their results yield ruin probabilities only, while in our case,
simultaneous downcrossing and upcrossing probabilities are needed. Nevertheless,
this presents a promising avenue for further research.

3.2 Links to one-dimensional renewal theory

Similar to the transformation of the bivariate problem in [2] and [3], an addi-
tional understanding of Ti can be obtained in terms of the one-dimensional process
{N(t)}t≥0 and certain hitting times of barriers that are time-varying. More specifi-
cally, dividing (8) by (logL(γi)− logL(γ j))/(γi− γ j), we get

N(t) = (t−Z(t))
γi− γ j

logL(γi)− logL(γ j)
.
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By plugging the previous in (9),

Ti = inf
{
`≥ 1 : N(W`)≤ si jW`−di j for all j < i and N(W`)≥ si jW`−di j for all j > i

}
(10)

= inf
{
`≥ 1 :

for some s ∈ [0,S`], N(s)≤ si jt−d∗i j for all j < i
and N(s)≥ si jt−d∗i j for all j > i

}
,

where si j =
γi−γ j

logL(γi)−logL(γ j)
, di j = (logL(γi)− logL(γ j))

−1bi j and d∗i j = (logL(γi)−
logL(γ j))

−1b∗i j.
Now, note that due to the monotonicity of L(·), si j = s ji > 0, d∗i j > 0 for all

j < i, and d∗i j < 0 for all j > i. The values {si j}i6= j are, in general, not ordered.
Nevertheless, it is possible to order a subset of it. To showcase this, let us first prove
the following technical result.

Lemma 1. Define Σ(λ ) = log(L(γ)) for all γ ∈ (−∞,c), where c = sup{z ∈ R :
L(γ)< ∞}. Then, the function Σ(·) is convex in (−∞,c).

Proof. Fix −∞ < γ < γ∗ < c and s ∈ (0,1). Then, for a random variable Z ∼ f and
constants p,q≥ 0 such that 1/p+1/q = 1, by Hölder’s inequality we get

Σ(sγ +(1− s)γ∗) = log
(
E
(

esγZe(1−s)γ∗Z
))

≤ log
(
E
(
epsγZ)1/pE

(
eq(1−s)γ∗Z

)1/q
)

=
1
p

Σ(psγ)+
1
q

Σ(q(1− s)γ∗)

= sΣ(γ)+(1− s)Σ(γ∗),

where we subsitute p = 1/s and q = 1/(1− s) in the last equality, verifying the
convexity of Σ(·).

Corollary 1. Define sM,M+1 = 0. Then, for all 0≤ i≤ j≤M, we have si,i+1≥ s j, j+1.

Proof. If j = M, then the inequality si,i+1 ≥ s j, j+1 trivially holds. If j < M, employ-
ing the convexity of Σ we get

1
si,i+1

=
Σ(γi+1)−Σ(γi)

γi+1− γi
≤

Σ(γ j+1)−Σ(γ j)

γ j+1− γ j
=

1
s j, j+1

,

which in turn implies that si,i+1 ≥ s j, j+1.

Given the order of the collection {si,i+1} that Corollary 1 yields, the decision rule
takes the following simple geometric form:

1. In the Euclidian space R2
+, draw lines that cross 0 with slopes {si j}i< j.
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2. For the line corresponding to the slope si j draw a barrier di j-units above and
another barrier |d ji|-units below. Let Bi j ⊂ R2

+ be the set of points lying strictly
between those barriers (see Figure 1).

3. Let Ci be the set of points lying strictly between the lines with slope s(i−1),i and
si,(i+1) (defining s0,1 =+∞ and sM,M+1 = 0).

4. Accept Hi as the correct hypothesis for the i for which {(W`,N(W`))}`≥1 enters
Ci \ ((∪`<iB`i)∪ (∪`>iBi`)) for the first time (see Figure 1).

Fig. 1: Acceptance areas associated to Ci \ ((∪`<iB`i)∪ (∪`>iBi`)) for i ∈ Θ =
{1,2,3,4,5}: Acceptance area for H1 (red), for H2 (violet), for H3 (blue), for H4
(green), and for H5 (mustard).

Remark 2. Analogously, we can also define the process in terms of the hitting events
of the continuously observed process {(t,N(t))}t≥0. More specifically, we declare
i as the correct hypothesis if {(t,N(t))}t≥0 enters Ci \

((
∪`<iB∗`i

)
∪
(
∪`>iB∗i`

))
first,

where the definition of B∗i j is akin to that of Bi j with di j and d ji being replaced by
d∗i j and d∗ji.

Within this framework, there are some non-trivial quantities of interest to com-
pute. First, note that

Pi(d 6= i)≤ Pi (σi < ∞) , where (11)
σi = inf{`≥ 1 : (W`,N(W`)) /∈Ci∪Bi−1,i∪Bi,i+1} (12)
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The previous simply states that no wrong decision can be taken if the set of points
{(W`,N(W`))}`≥1 never leaves an area which contains the entire acceptance area
for Hi. Interestingly, the r.h.s in (11) corresponds to the exit probability of a two-
dimensional random walk on a cone. This is investigated in [6]. However, the au-
thors there investigate the exponential decay of the non-exit probability. Their work
relies on identifying the dual cone K∗ of Ci, defined by

K∗ = {z ∈ R2 : 〈x,z〉 ≥ 0 ∀ x ∈Ci}. (13)

Then, they show that

limsup
n→∞

P(σi > n)1/n = inf
z∈K∗

L̃(z), where (14)

L̃(z) =
∫
R2

e〈z,y〉 (δ1(y1)× fi(y2)dν(y2)) . (15)

In our case, K∗ is the cone between the lines z2 =(−1/si,i+1)z1 and z2 =(−1/si−1,i)z1;
it is readily verified that the infimum of L̃(z) over K∗ is actually reached at these
lines. Thus, we need to find the infimum of the functions

g1(z2) =
∫
R2

e−si,i+1z2y1+z2y2 (δ1(y1)× fi(y2)dν(y2))

g2(z2) =
∫
R2

e−si−1,iz2y1+z2y2 (δ1(y1)× fi(y2)dν(y2)) .

In the case of g1,

log(g1(z1)) =−si,i+1z2 + log
(∫

R2
ez2y2 fi(y2)dν(y2)

)
=−si,i+1z2 + log(L(z2 + γi)) .

Given that the function Σ is convex and increasing, then

log(L(z2 + γi))

dz2
= Σ

′(γi)≥
Σ(γi)−Σ(γi−1)

γi− γi−1
= si−1,i,

meaning that the minumum of g1 is reached at z2 = 0. Analogous arguments follow
for g2, which in turn implies that the infimum of L̃ over K∗ is reached at (z1,z2) =
(0,0). In short, the results of [6] confirm that exiting from the cone Ci is not a certain
event.

4 Numerical examples

In the following, we perform a simulation study of the MSPRT in order to measure
its efficiency from an empirical perspective; we do this following the implemen-
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tation laid out in Subsection 3.2, though we stress that the one in [5] or Subsec-
tion 3.1 produces the same results by alternative means. Suppose that ν in (6) is
the Lebesgue measure and f (x) = e−x, from which we sample an i.i.d. sequence
{X`}`≥1 with X` ∼ f . In this analysis, we desire to test if the data {X`}`≥1 identi-
fies via the MSPRT the correct hypohesis or not, with alternative hypotheses being
“close” to the original one. More specifically, we take Θ = {1,2,3,4,5}, and let
the tilting values be γ1 = −2β , γ2 = −β , γ3 = 0, γ4 = β and γ5 = 2β for some
β ∈ (0,1/2). Furthermore, let ρρρ take the form

ρρρ = (ρ/2,ρ,ρ,ρ,ρ/2), ρ ∈ (0,1);

given the geometric considerations of Figure 1, it makes sense to consider a stricter
level of risk for H1 and H5, as they have only one neighbouring region each.

Now, take β = 0.2 and generate 200 samples of sequences {X`}`≥1 which fol-
low the density function f ; note that the MSPRT choosing H3 for a given sam-
ple would correspond to a correct labeling, and any other case is a mislabel; see
Figure 2 for a sample which was labelled correctly. Out of the 200 samples, we

Fig. 2: Renewal process N(t), shown in black, associated to one sample of simulated
data {X`}`≥1. The process enters the acceptance region of H3 at T = 321 observa-
tions.

then count for how many of them the MSPRT chooses Hi, i ∈ Θ , for different
ρ = 0.5,0.25,0.1,0.05,0.025, and provide the empirical average of samples needed
to reach a conclusion, T . These results are shown in Table 1 below.
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ρ H1 H2 H3 H4 H5 Empirical mean of T
0.5 0 23 159 18 0 123.97
0.25 0 1 199 0 0 373.15
0.1 0 0 200 0 0 981.975
0.05 0 0 200 0 0 1904.245
0.025 0 0 200 0 0 3720.985

Table 1: Counts of 200 sample runs resulting in Hi, i ∈ Θ , for β = 0.2 and ρ =
0.5,0.25,0.1,0.05,0.025, along with empirical average of T .

As we can observe, the MSPRT is remarkably accurate at identifying the correct
hypothesis, even when ρ is moderately large. In fact, the discrepancy between the
risk ρ and the proportion of instances the algorithm chooses the wrong hypothesis
is considerable: this is explained by the fact that ρ is proven to be an upper bound to
the actual risk, which heuristically seems to be much lower. As expected, the mean
number of samples until a decision is taken increases as ρ decreases.

Repeating the aforementioned procedure for β = 0.1 yields the results presented
in Table 2 below.

ρ H1 H2 H3 H4 H5 Empirical mean of T .
0.5 0 23 151 26 0 467.95
0.25 0 0 199 1 0 1469.19
0.1 0 0 200 0 0 3741.455
0.05 0 0 200 0 0 7433.485
0.025 0 0 200 0 0 14445.49

Table 2: Counts of 200 sample runs resulting in Hi, i ∈ Θ , for β = 0.1 and ρ =
0.5,0.25,0.1,0.05,0.025, along with empirical average of T

We can notice that in this case, the proportion of times the MSPRT chooses
the right hypothesis is comparable to the case β = 0.2, however, the mean number
of samples until a decision is taken is considerably higher. This is consistent with
the fact that we are comparing hypotheses that are “closer” than those in the case
β = 0.2, and the algorithm needs more data to reach a proper conclusion.

To stress the MSPRT further, we consider the case where β = 0.05 and collect
the results in Table 3 below.

Once again, the frequency with which the MSPRT chooses the right hypothesis
in this instance is comparable to the cases β = 0.2,0.1, while the mean number of
needed samples until a decision is taken is the largest amongst all cases.
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ρ H1 H2 H3 H4 H5 Empirical mean of T
0.5 0 24 156 20 0 1857.165
0.25 0 1 197 2 0 5738.82
0.1 0 0 200 0 0 15084.21
0.05 0 0 200 0 0 29105.39
0.025 0 0 200 0 0 56722.98

Table 3: Counts of 200 sample runs resulting in Hi, i ∈Θ , for β = 0.05 and ρ =
0.5,0.25,0.1,0.05,0.025, along with empirical average of T .

5 Conclusion

We provided a novel understanding of the MSPRT for exponential tilting in terms
of the first passage times of a multivariate risk process and a renewal process with
time-varying barriers. Both proposed alternative approaches indicate interesting fu-
ture avenues of research: the former is connected to recent research on queues with
simultaneous arrivals [4], and the latter with first passage probabilities of multidi-
mensional random walks in cones [6]. Furthermore, our simulated numerical exper-
iments suggest the need to pursue tighter bounds for the risks guaranteed for a given
MSPRT, via both proposed alternative interpretations provided in this paper.
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