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Abstract A popular model in time series analysis is the autoregression model. It
explains the current value of a modeled process by means of a weighted average of
its past values. In this paper, we focus on two important aspects. Firstly, the mod-
eled variable stands for counts, i.e., it takes values in the set of nonnegative integers.
Secondly, we focus on online modeling, where the arriving observations sequen-
tially update estimates of the parameters. The emphasis is put on low computational
requirements, opening the way towards high-rate real world applications. The paper
describes our initial results in this domain. The solution is based on a Poisson autore-
gression model, where the linear predictor and the modeled variable are canonically
linked by the logarithmic function. The adopted Bayesian estimation framework re-
lies on an analytical approximation of the Poisson model by a Gaussian density. A
Gaussian prior then provides analytically tractable posterior estimator. Two exam-
ples demonstrate the feasibility of the solution. We demonstrate a potential of our
approach on the simulated data as well as COVID-19 data and notice advantageous
performance of considered methods especially for the use in machine learning.

1 Introduction

Traditional statistical analyses of time series rely on techniques of exponential
smoothing and ARMA modeling. In our work, we focus on the autoregression mod-
els, where the prediction of the variable of interest is based on a weighted linear
combination of its past values. Based on their structure, they allow for modeling
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of stationary processes, random walks (potentially with a drift), or oscillating pro-
cesses. For this substantial flexibility, the autoregression models have found an im-
mense number of applications in virtually all domains of human activity, from hu-
manities over science to technology [4, 15, 21]. Their flexibility has also led to
development of numerous modifications and improvements of the basic autoregres-
sion model. To name only a few: the autoregression model with exogeneous in-
puts (ARX) is popular in the control theory [17], the seasonal autoregression (SAR)
model used in domains with fixed periodicity of the observed variable, the nonlin-
ear autoregression and its variants [3], or the vector autoregression (VAR) [22]. The
autoregression can even represent the temporal evolution of a random process vari-
ance, which gives rise to the autoregressive conditional heteroskedasticity (ARCH)
models [9]. The combination of various AR models with moving average models
then yields the phenomenal class of ARMA models [4, 21].

We focus on autoregression models of count variables. Recall, that the ‘classical’
AR models assume Gaussian distribution of the error component. Violation of this
assumption need not be critical if the counts are high enough. However, if the counts
are low, the ‘classical’ models are prone to failure. In particular, the forecasted val-
ues may take negative values. One possible solution is to consider the variable at
time t to be connected with its (transformed) past values through a convenient link
function. This gives rise to the generalized linear models (GLMs) [20]. If the link
function is the natural logarithm, the resulting model is Poisson. For completeness
we mention, that the ‘classical’ AR model is a GLM too – the link function is the
identity function.

A common feature of the inferential methods for the Poisson AR model is their
offline character. This means, that they are able to estimate the model parameters
from a batch of observed data. However, if new observations are acquired, there is
no computationally cheap way to update the previous estimates. In combination with
the iterative character of the inferential methods, this may be a significant obstacle
to the use of the Poisson AR model in quick online applications.

The present paper reports our initial results in the domain of sequential modeling
of time series of counts. We exploit the results of the second author in Bayesian
estimation of the Poisson GLM [7]. However, they are not fully transferable, as the
time series domain faces specific issues, e.g., those connected with the stationarity
of AR processes, or the invertibility of MA processes. These topics and their impact
on estimation are postponed to future research.

2 Poisson autoregression

Let us assume a probability space (Ω ,A ,P) and T ≡ N0 a set of discrete time
indices. Furthermore, let (Yt)t∈T be a discrete-time stochastic process with nonneg-
ative values yt ∈N0. Let the variable Xt be measurable with respect to the σ -algebra

Ft−1 = σ(Yτ ;τ ≤ t−1).
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If it follows from the generative model

Yt |Ft−1 ∼ Poisson(λt) (1)

with λt = exp(νt) where

νt = β0 +
p

∑
i=1

βilog(LiYt) (2)

= βββXXX t (3)

=


β0
β1
...

βp


ᵀ

1
log(Yt−1)

...
log(Yt−p)

 , p≥ 1, (4)

we talk about the Poisson autoregressive process of order p. The operator L is the lag
(or backshift) operator. The resulting series (Y1, . . . ,Yt) is the time series of counts.
βββ ∈ Rp+1 is the vector of regression coefficients, and XXX ttt ∈ Rp+1 is the regressor.
From the properties of the underlying Poisson distribution, it holds

E[Yt |Ft−1] = λt = exp(βββXXX t), (5)
var[Yt |Ft−1] = λt = exp(βββXXX t). (6)

This property is known as the equivariance.
For obvious reasons, the given model admits zero values of Yt only in the limit

case if νt → −∞, which makes it inappropriate for most real time series. Several
modifications have been proposed in the literature to deal with this issue. For in-
stance, the vector XXX ttt is replaced with

XXX ′t =


1

log(Yt−1 + c)
...

log(Yt−p + c)

 , or XXX ′t =


1

log(max(Yt−1,c))
...

log(max(Yt−p,c))

 . (7)

Both models have been used to model counts, see [23]. In the former case, a positive
constant c (”immigration” rate) is added to the measurements in order to suppress
zero values. In the latter case, c in the argument max(Yt−1,c) relates to the probabil-
ity of Yt > 0 given that yt−1 = 0 for Poisson distributed random variable.

Mostly, the value c = 1, but it is reported that a reasonable values of c do not
have a gross impact on modeling performance [10].

The presented model is only one of many possible choices. For further details
see book of Kedem and Fokianos [14, Chapter 4], [16], [6].
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3 Sequential estimation of model parameters

The Poisson model (1) is a standard generalized linear model with a canonical log-
arithmic link function [18]. It is characterized by the probability density function

p(yt |Ft−1) =
λ

yt
t exp(−λt)

yt !
(8)

=
exp(βββXXX tyt)exp(−exp(βββXXX t))

yt !
. (9)

The estimation of the vector βββ traditionally relies on the maximum likelihood
method [10]. As the score equation is nonlinear in respect of the model parame-
ters, the estimator is not analytically tractable and will have to be found using it-
erative optimization. Typically, iterative reweighted least squares (IRLS) relying on
Newton-Raphson procedure are used. This and other MLE-oriented approaches are
discussed, e.g., in [19] and [5, Chapter 3.1]. Alternatively, it is possible to infer βββ by
means of the Bayesian framework. This domain clearly relies on expensive Markov
chain Monte Carlo (MCMC) methods [19]. In either case, the estimation is

• offline, i.e., it requires the batch of data and does not allow for sequential updating
of estimates by new observations;

• intrinsically computationally expensive due the iterative character of existing
methods.

In order to perform a true sequential inference of βββ from continually acquired
observations, we may take advantage of the method suggested by the second author
in [7] and originally inspired by [8]. The transformation, ascribed to Bartlett and
Kendall [2], is that any probability density function of the form

θ
y−1 exp(−θ) (10)

is approximately proportional to

exp
( y

2
(log(θ)− log(y))2

)
, (11)

see [8]. This allows to rewrite the densities proportional to (10) as the densities
of N(logy,y−1). This approximation works relatively well for y large enough. The
publication [7] of the second author additionally considers a calibration suppressing
the approximation error for low values of y. Since the approximation does not admit
zero values of yt , we adopt the principle presented in Section 2 and add a small
constant to it. The resulting variable ỹt = yt +c now allows us to rewrite the Poisson
GLM as

p(yt |Ft−1) ∝ exp(βββXXX t ỹt)exp(−exp(βββXXX t)) (12)

≈
√

ỹt

2π
exp
(
− ỹt

2
(log(ỹt)−βββXXX t)

2
)
. (13)
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It is well known that a convenient prior distribution for βββ obeying the Gaussian
likelihood (13) with known variance is a p+1-dimensional Gaussian distribution,

π(βββ |Ft−1) =
1√

(2π)p+1|ΣΣΣ t−1|
exp
(
−1

2
(βββ − β̂ββ t−1)ΣΣΣ

−1
t−1(βββ − β̂ββ t−1)

ᵀ
)
, (14)

where β̂ββ t−1 ∈ Rp+1 is the prior point estimator of βββ and ΣΣΣ ∈ R(p+1)×(p+1) is the
covariance matrix. The filtration

Ft−1 = (Fτ)τ=0,...,t−1 (15)

encompasses all information about the process up to time t−1.
The posterior distribution resulting from the Bayes’ theorem reads

π(βββ |Ft) ∝ p(yt |Ft−1)π(βββ |Ft−1) (16)

∝

√
yt

2π
exp
(
−yt

2
(log(yt)−βββXXX t)

2
)

× 1√
(2π)p+1|ΣΣΣ t−1|

exp
(
−1

2
(βββ − β̂ββ t−1)ΣΣΣ

−1
t−1(βββ − β̂ββ t−1)

ᵀ
)

(17)

∝
1√

(2π)p+1|ΣΣΣ t |
exp
(
−1

2
(βββ − β̂ββ t)ΣΣΣ

−1
t (βββ − β̂ββ t)

ᵀ
)
, (18)

where the updated hyperparameters β̂ββ t and ΣΣΣ t follow from a simple algebra. They
are given by the formulas

ΣΣΣ t =
(
ỹtXXX tXXX

ᵀ
t +ΣΣΣ

−1
t−1
)−1

, (19)

β̂ββ t = ΣΣΣ t

(
ΣΣΣ
−1
t−1β̂ββ t−1 + ỹt log(ỹt)XXX t

)
. (20)

The following sections contain application of the above theory to simulated and
real data to see whether choice of modifications (7) and/or constant c affects esti-
mates of hyperparameters βββ and predictions.

4 Example I: Simulated data

In this chapter we focus on performance of Poisson autoregressive model (3) of
order p = 2 for 3 modifications given in (7) and the following values of constant c:

Model 1 [c = 1] : νt = β0 +β1 log(yt−1 +1)+β2 log(yt−2 +1) (21)
Model 2 [c = 1] : νt = β0 +β1 log(max(yt−1,1))+β2 log(max(yt−2,1)) (22)
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β0 β1 β2
Model 1 0.233 0.083 0.073
Model 2 0.103 0.05 0.02
Model 3 0.071 0.039 0.022

Table 1 Simulated data example: RMSE of estimates of unknown hyperparameters βββ against pre-
set values βββ = (β0,β1,β2) = (1.1,0.5,0.1).

Fig. 1 Simulated data example. Top: Predictions given by models (21), (22), (23). Bottom three
plots depict the evolution of estimates of (β0,β1,β2) plotted against values (1.1,0.5,0.1) used to
generate observations from autoregressive Poisson process of 2nd order.

Model 3 [c = e−10] : νt = β0 +β1 log(max(yt−1,e−10))

+β2 log(max(yt−2,e−10)) (23)

To demonstrate effectiveness of model (3) with modifications (7) we generated
first two observations from Poisson distribution with λ = 5 and the rest of the data
from Poisson distribution with updated value of the rate parameter according to
modifications (21), (22), (23).

Figure 1 shows the predictions and comparison of estimated values β̂ββ to the orig-
inal values of hyperparameters βββ based on models (21), (22), (23). The prediction
trendline as well as the root mean square errors (RMSE) for estimates of βββ are sim-
ilar for all three models with Model 2 and Model 3 having slightly lower values of
RMSE, see Table 1. However, Model 1 estimates only stabilise around time step 150
while the estimates based on Model 2 and Model 3 stabilise early on. Although all
three models performed well in terms of predictions, the behaviour of regression co-
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Model 1 Model 2 Model 3
RMSE (whole dataset) 45.26 45.86 45.36

RMSE (train/test) 3.98 3.26 4.36

Table 2 Real data example: RMSE of predictions based on COVID-19 data from the whole year
and on testing set when splitting into training set and testing set.

Fig. 2 Black line: numbers of new confirmed COVID-19 cases - raw data. Coloured lines: predic-
tions using models (21), (22), (23) for the whole year.

efficients estimates especially for Model 1 (with possible constraints on the values)
is of interest in future research.

5 Example II: Real time series

To demonstrate effectiveness of models (21), (22), (23) on real time series we use
data from COVID-19 Google Open Dataset (COD) https://health.google.com/covid-
19/open-data/, i.e., we use daily numbers of new confirmed cases in Australia from
the first year (365 days) starting from 01/01/2020. Example of another approach
dealing with COVID-19 data using Poisson AR model can be found in [1].

5.1 Whole dataset

In this section we let our models run on the whole set of 365 data. Figure 2 shows
the original data and trendlines obtained – produced trendlines are very similar and
resemble the raw data trendline. RMSE for all three models are very similar, see
Table 2.

Figure 3 shows the estimates of unknown βββ at each time step. While the estimates
based on Model 2 and Model 3 stabilise early, estimates based on Model 1 only
stabilise after 2/3 of the data has been processed.
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Fig. 3 Estimates of hyperparameters βββ = (β0,β1,β2) based on modifications (21), (22), (23) for
COVID-19 data from Australia (whole year starting from 01/01/2020).

This is a potential issue especially if we were to use machine learning techniques
for βββ estimation in future, e.g., splitting dataset into training part and testing part -
we investigate this in the next subsection.

5.2 Training and testing set

In this section we divide COVID-19 dataset into two disjoint subsets - a training set
and a testing set. We let all three models run on the first subset of data (training set);
last estimated value of hyperpameters βββ is then taken and used to obtain predictions.
We then compare the predictions to appropriate subset of raw data (testing set).

Firstly, we use first 80% of data as a training set to obtain an estimate for un-
known βββ . Since the estimates, especially in Model 1, are stabilised by this time
point the predictions for all three considered models are very similar to the values
of raw data, see Figure 4.

All three considered modifications perform well in terms of predictions; their
RMSE are quite small and not significantly different, see Table 2; however the be-
haviour of hyperparameter (regression coefficients) estimates deserves further in-
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Fig. 4 Predictions based on splitting of the real data into: first 80% training data, the rest 20%
testing data.

vestigation with introduction of possible constraints on their values and perhaps
inclusion of new modifications.

6 Conclusion and future work

We have presented our initial results in the domain of sequential modeling of count
data. This domain becomes increasingly popular due to the omnipresence of count
data, and the rapid development of cheap smart appliances, Internet of Things etc.
The examples demonstrate that the proposed method is able to reliably estimate the
true model parameters. The example focused on a real time series then shows that
the method is applicable to real-world problems.

There is a huge research potential in the domain. In particular, we will focus on
two issues. First, the real-world count data often contain more zeros than prescribed
by the Poisson model. This issue is known as zero-inflation [11]. Second, the equiv-
ariance assumption is rather limiting in practical applications. In the GLM domain,
there exist more apt models for under- and overdispersion, e.g., the negative bino-
mial or the generalized Poisson models [12, 13].
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