
Bulk-boundary correspondences and unique
continuation in asymptotically Anti-de Sitter
spacetimes

Arick Shao

Abstract This article surveys the research presented by the author at the MATRIX
Institute workshop Hyperbolic Differential Equations in Geometry and Physics in
April 2022. The work is centred about establishing rigorous mathematical state-
ments toward the AdS/CFT correspondence in theoretical physics, in particular in
dynamical settings. The contents are mainly based on the recent paper [37] with
Gustav Holzegel that proved a unique continuation result for the Einstein-vacuum
equations from asymptotically Anti-de Sitter (aAdS) conformal boundaries. We also
discuss some preceding results [20, 35, 36, 55, 59], in particular novel Carleman es-
timates for wave equations on aAdS spacetimes, which laid the foundations toward
the main results of [37].

1 Introduction

One of the most influential research directions in theoretical physics over the past
three decades is the AdS/CFT correspondence. AdS/CFT—first formulated by Mal-
dacena [51, 52]—roughly posits a correspondence between gravitational dynamics
in asymptotically Anti-de Sitter spacetimes and conformal field theories on their
boundaries; see also the works of Gubser, Klebanov, and Polyakov [32] and Wit-
ten [68] for further early developments. AdS/CFT is also often associated with the
term holography [61], as the boundary theory is of one dimension lower than the
gravitational theory.

In spite of extensive research and discussions in physics, surprisingly few math-
ematical statements pertaining to the AdS/CFT correspondence have been rigor-
ously proven, or even formulated. Furthermore, nearly all rigorous results have been

Arick Shao
School of Mathematical Sciences, Queen Mary University of London
London E1 4NS, United Kingdom
e-mail: a.shao@qmul.ac.uk

1



2 Arick Shao

within stationary backgrounds (see for instance [2, 12, 13, 16, 69]), whereas dynam-
ical (time-dependent) settings are almost entirely untreated.

The works described in this article represent an ongoing programme to establish
rigorous mathematical theory related to the AdS/CFT correspondence. The aim is
to rigorously state and prove statements along this direction, as well as to better un-
derstand the mechanisms behind such correspondences. In particular, the key results
here will be formulated in terms of unique continuation for the Einstein equations.
Also, although discussions of AdS/CFT in physics extend well beyond classical
relativistic settings, here we will restrict our attention to within general relativity, as
this provides us a physical theory with firmly established mathematical foundations.

1.1 Anti-de Sitter Spacetime

In Einstein’s theory of general relativity, spacetime is modeled as an (n + 1)-
dimensional Lorentzian manifold (M ,g); as a matter of convention, we assume
g has signature (−,+, . . . ,+). In this article, we will only consider spacetimes that
do not involve matter fields, so that g satisfies the Einstein-vacuum equations (EVE),

Ric[g] =
2Λ

n−1
g, (1)

with Ric[g] denoting the Ricci curvature associated to g, and Λ ∈ R being the cos-
mological constant. Furthermore, here we are concerned with the case in which
Λ < 0.

Remark 1. While classical relativity lies in 3+ 1 dimensions, here we work in any
dimension, since many settings of interest within the AdS/CFT correspondence con-
cern other dimensions.

Anti-de Sitter, or AdS, spacetime is the analogue of Minkowski spacetime in the
case of negative cosmological constant. More specifically, it is the maximally sym-
metric solution of the EVE

Ric[g] =−ng, Λ :=
−n(n−1)

2
< 0. (2)

While there are many ways to describe AdS spacetime, one useful global representa-
tion is as the manifold (Rt×Rn

x ,gAdS), where the metric is given in polar coordinates
by

gAdS := (1+ r2)−1dr2− (1+ r2)dt2 + r2
γ̊ , (3)

with γ̊ being the unit round metric on Sn−1.

Remark 2. One can rescale (3) to obtain a solution of (1) for any Λ < 0. The partic-
ular normalization Λ = −n(n−1)

2 is convenient for simplifying various constants.
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For our purposes, it will be useful to express (3) using an inverted radius ρ ,
defined by

4r := ρ
−1(2+ρ)(2−ρ), ρ ∈ (0,2]. (4)

Observe that ρ ↘ 0 corresponds to “infinity" r↗ ∞, while ρ ↗ 2 corresponds to
the centre r↘ 0. A direct computation shows that (4) transforms (3) into the form

gAdS =
1

ρ2

[
dρ

2 +(−dt2 + γ̊n−1)−
1
2

ρ
2(dt2 + γ̊n−1)+

1
16

ρ
4(−dt2 + γ̊n−1)

]
, (5)

with ρ being a conformal boundary-defining function. In anticipation of upcoming
terminology, we will refer to (5) as a Fefferman-Graham (or FG) gauge for the AdS
metric.

In particular, ignoring for the moment the conformal factor ρ−2 in (5), we can
then formally associate at “ρ = 0" a timelike boundary for AdS spacetime:

(IAdS,gAdS) := (Rt ×Sn−1,−dt2 + γ̊). (6)

We refer to (6) as a conformal boundary, or conformal infinity, of AdS spacetime.
Similar to how one can study asymptotically flat spacetimes that only behave

like Minkowski spacetime “at infinity", we can similarly expand our outlook from
AdS spacetime to asymptotically AdS (aAdS) spacetimes. Very roughly, aAdS space-
times are those with similar qualitative properties “at infinity" as AdS spacetime, in
particular having a timelike conformal boundary. We will provide a more precise
description of aAdS spacetimes in the subsequent section.

Remark 3. A more well-known conformal transformation of AdS spacetime embeds
AdS spacetime into half the Einstein cylinder, Rt ×Sn−1

+ , with metric

gAdS =
1

cos2 θ
[−dt2 +dθ

2 +(sin2
θ) γ̊].

However, the FG gauge will be more useful, as it extends directly to the study of
aAdS metrics.

1.2 Unique Continuation

Informally, our main objective is to address the following question, representing a
purely classical statement in support of the AdS/CFT correspondence:

Problem 1. Is there some one-to-one correspondence between (a) asymptotically
AdS solutions (M ,g) of the EVE (2) (representing “gravitational dynamics"), and
(b) appropriate data prescribed at the conformal boundary I (representing the “con-
formal field theory")?

If we lack additional foresight from partial differential equations (PDEs), then
a reasonable attempt at Problem 1 might be to solve (2) given appropriate Cauchy
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(i.e. Dirichlet and Neumann) data on I . However, this approach immediately runs
into fundamental issues, since the EVE is primarily hyperbolic (in the appropriate
gauges). As a result, (2) becomes ill-posed when data is prescribed on a timelike
hypersurface, such as the conformal boundary (I ,g). In particular, given Cauchy
data on I , a solution to (2) may not exist, much less depend continuously on the
data.

Remark 4. In contrast, the appropriate well-posed problem for the EVE in aAdS
settings is the initial-boundary value problem, in which Cauchy data is prescribed
on a spacelike hypersurface, and only one piece of boundary data (e.g. Dirichlet,
Neumann, or Robin boundary condition) is imposed on the conformal boundary.
For further discussions, see [23, 24, 27, 66, 67].

We are thus forced to attack Problem 1 differently. The key idea is that we instead
formulate Problem 1 as a unique continuation problem—this is a classical PDE
question for ill-posed settings that has an extensive history and literature; see, e.g.,
[18, 19, 34, 40] for classical results. In short, for unique continuation problems, one
avoids solving the PDE altogether and instead asks: if the solution exists, then must
it be uniquely determined by the prescribed data?

In light of this, we can restate Problem 1 as a unique continuation problem for
the EVE:

Problem 2. If two aAdS spacetimes (M ,g) and (M̄ , ḡ) solving the Einstein-
vacuum equations (2) have the same conformal boundary data, then must g and
ḡ be isometric?

Very informally, the answer to Problem 2—the main result of the joint work [37]
with Holzegel—is “yes, assuming certain conditions on the conformal boundary
(I ,g) hold". The goal of the upcoming sections is to work toward a precise formu-
lation of Problem 2 and a precise statement of the main result of [37]. Moreover, we
will discuss the main ideas behind the proof of this result.

1.3 Organisation of the Article

In Section 2, we give a precise description of aAdS spacetimes, the setting of our
analysis, and we introduce the notion of vertical tensor fields, the main quantities
that we will work with. Next, Section 3 is dedicated to the precise statements of our
main result (see Theorem 3.2) and its corollaries, as well as the geometric assump-
tions required for these results to hold. In Section 4, we discuss recently established
Carleman estimates for tensorial wave equations in aAdS spacetimes, which is the
main technical innovation behind our results. Section 5 introduces some of the main
ideas behind the proof of our main result. Finally, in Section 6, we briefly discuss
some additional questions of interest that are related to the contents of this article.
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2 Asymptotically AdS Spacetimes

While we had previously characterized aAdS spacetimes as “roughly like AdS near
and at the conformal boundary", we will need a much more precise definition if
we are to state precise results. In this section, we provide the mathematical setup
for studying various relevant quantities on aAdS backgrounds, both near and at the
conformal boundary.

2.1 The Fefferman-Graham Gauge

Similar to the AdS metric, one can apply a similar transformation to metrics that are
only asymptotically like AdS into a FG gauge, characterized by a boundary defining
function ρ that is both normalised and fully decoupled from the other components.
As a result, we will, as a matter of convenience, define the aAdS spacetimes that
we consider in terms of such FG gauges. We refer to these backgrounds as FG-
aAdS segments, representing an appropriate portion of an aAdS spacetime near the
conformal boundary.

Remark 5. See [29] for a treatment of FG gauges in asymptotically hyperbolic man-
ifolds, that is, the Riemannian analogue of our setting. In fact, the argument in [29]
for reducing more general metrics into FG gauges extends directly to Lorentzian,
aAdS settings.

Definition 1. Let (I ,g) be a n-dimensional Lorentzian manifold, and let ρ0 > 0.
We say that (M := (0,ρ0]ρ×I ,g) is an FG-aAdS segment, with conformal infinity
(I ,g), if g has the form

g = ρ
−2(dρ

2 +g), (1)

where g := g(ρ), ρ ∈ (0,ρ0], is a smooth family of Lorentzian metrics on I such
that g has a continuous limit g(0) := g as ρ ↘ 0. Furthermore:

• We refer to the form (1) as the Fefferman-Graham (FG) gauge condition.
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• We say (M ,g) is vacuum iff g also satisifes the EVE (2).

Observe in particular that AdS spacetime can itself be formulated as a vacuum
FG-aAdS segment, with the standard conformal infinity (6). In particular, the FG
gauge (5) for the AdS metric is precisely of the form (1). Similarly, the usual
Schwarzschild-AdS and Kerr-AdS spacetimes can also be expressed as vacuum FG-
aAdS segments, at least near the conformal boundary. More generally, a large class
of vacuum FG-aAdS segments with conformal infinity (6) can be constructed by
solving initial-boundary value problems for the EVE; see [24, 27].

Remark 6. Note that Definition 1 allows for very general conformal boundary
topologies. In particular, we can consider settings with flat conformal boundaries,

IpAdS := Rt ×Rn, ItAdS := Rt ×Tn. (2)

These are realized as conformal boundaries for the planar and toric AdS spacetimes.

Remark 7. We refer to g, which fully describes the spacetime geometry, as the ver-
tical metric. We will discuss vertical tensor fields more generally at the end of this
section.

2.2 Fefferman-Graham Expansions

We now turn our attention to vacuum FG-aAdS segments, and can immediately ask
the following: if (M ,g) is also vacuum, then what structure does this impose on g
at the conformal boundary? The answer comes from the seminal work of Fefferman
and Graham [25, 26] on the ambient construction. While these concerned extending
vacuum metrics from null cones, this has since been widely adapted to aAdS settings
in the physics literature.

In short, when (M ,g) is vacuum, one can derive a formal series expansion for g
near ρ = 0:

g(ρ) =

{
g(0)+g(2)ρ2 + · · ·+g(n−1)ρn−1 +g(n)ρn + . . . n odd,
g(0)+g(2)ρ2 + · · ·+g(n−2)ρn−2 +g(?)ρn logρ +g(n)ρn + . . . n even.

(3)

The above is commonly known as the Fefferman-Graham expansion for g. The g(k)’s
and g(?) are covariant symmetric rank-2 tensor fields on I , with the anomalous loga-
rithmic coefficient g(?) only appearing when the boundary dimension n is even. Note
the leading coefficient g(0) = g is simply the conformal boundary metric. Moreover,
(2) implies that all the coefficients g(k) for 0 < k < n—as well as g(?) when n is
even—are determined locally by g and its derivatives.

Remark 8. We will use the notations g and g(0) interchangeably, depending on con-
text.
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The situation changes once we reach g(n). Here, one can derive from (2) that both
the divergence and the trace of g(n) are determined by g and its derivatives. On the
other hand, the remaining components of g(n) are free, meaning that they are not
formally determined by the EVE.

Finally, the formal expansion (3) can be further continued beyond g(n), with all
subsequent coefficients formally determined by the pair (g(0),g(n)) alone. Also, when
n is even, the expansion remains polyhomogeneous beyond g(n), involving additional
powers of logρ .

Now, when (g(0),g(n)) is real-analytic, Kichenassamy [46] showed, via Fuchsian
techniques, that (3) converges near ρ = 0 to a vacuum aAdS metric. However, an-
alyticity is a far too restrictive condition, as this is not satisfied by generic aAdS
metrics (e.g. arising from an initial-boundary value problem), for which the expan-
sion (3) is merely formal.

In these non-analytic settings, in which (3) fails to converge, one still expects that
a partial FG expansion holds, up to some finite order. (An apt analogy would be
applying Taylor’s theorem as opposed to Taylor series.) This was rigorously proved
by the author in [59]—more specifically, assuming minimal regularity conditions, g
retains the form (3), but only up to n-th order. We state a simplified version of this
result below (see [59, Theorem 3.3] for the full statement):

Theorem 2.1 ([59]). Let (M ,g) be a vacuum FG-aAdS segment, with n > 1. More-
over, suppose:

• g is locally bounded in Cn+4 in the I -directions, up to the conformal boundary.
• Lρ g is locally bounded in C0 in the I -directions, up to the conformal boundary.

Then, g satisfies the following partial FG expansion near ρ = 0:

g =

∑

n−1
2

k=0 g
(2k)ρ2k +g(n)ρn +o(ρn) n odd,

∑

n−2
2

k=0 g
(2k)ρ2k +g(?)ρn logρ +g(n)ρn +o(ρn) n even.

(4)

Furthermore, the coefficients of the expansion satisfies the following:

• g(2k), for any 0≤ 2k < n, is determined by g and its derivatives:

g(2k) = R
(2k)
n (∂≤2kg). (5)

• In particular, g(0) = g, and −g(2) is the Schouten tensor for g whenever n≥ 3:

−g(2) = P[g] :=
1

n−2

(
Ric[g]− 1

2(n−1)
R[g] ·g

)
. (6)

• When n is even, g(?) is also determined by g and its derivatives:

g(?) = R
(?)
n (∂≤ng). (7)

• Both the g-divergence and g-trace of g(n) are determined by g and its derivatives:
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divg g(n) = Rdiv
n (∂≤n+1g), trg g(n) = R tr

n (∂
≤ng). (8)

In fact, when n is odd, both Rdiv
n and R tr

n are identically zero.

Remark 9. Here and throughout the rest of this article, we use L to denote the Lie
derivative, and Lρ for the Lie derivative in the “(0,ρ0]-direction" of M .

Remark 10. The relations R
(2k)
n , R

(?)
n , Rdiv

n , R tr
n in (5)–(8) are universal, in that

they only depend on the dimension n, and not on I or g. Moreover, each of these
relations could in principle be computed, although the exact formulas tend to be
exceedingly complicated.

Remark 11. The partial FG expansion can be continued beyond g(n) to any arbitrary
(but finite) order, as long as one assumes sufficient additional regularity on g.

The coefficients g(2k) (0 < 2k < n) and g(?) are generated by computing the limits
of ρ-derivatives of g at the conformal boundary. These boundary limits are obtained
through an inductive process by taking successive ρ-derivatives of (an appropriate
form of) the EVE. This induction continues until one reaches g(n), which—other than
(8)—cannot be obtained from the EVE. Nonetheless, one can still extract existence
of the free coefficient g(n) in (4), although it is not determined by any of the preceding
coefficients. For details, see the discussions in [59].

Remark 12. In particular, the conclusions of [59] show that in practice, one needs
not separately assume that g(n) and the ρn-term in the partial FG expansion exists.

In particular, Theorem 2.1 shows that even though we no longer have a full infi-
nite series expansion, we can nonetheless still view (g(0),g(n)) as free boundary data
(excepting the constraints (8)) for the EVE. Additionally, in the physics literature,
g(n) is closely connected to the stress-energy tensor for the boundary conformal field
theory; for further discussions, see [22, 60].

For future convenience, we introduce the following terminology for our boundary
data:

Definition 2. In general, we refer to a triple (I ,g(0),g(n)) as holographic data iff
(I ,g(0)) is an n-dimensional Lorentzian manifold, and g(n) is a symmetric 2-tensor
on I satisfying (8).

Furthermore, given a vacuum FG-aAdS segment (M ,g), we refer to the (I ,g(0),g(n))
obtained from Theorem 2.1 as the holographic data associated to (M ,g).

Finally, one can explicitly compute the partial FG coefficients for the Schwarzschild-
AdS metric with mass M ∈ R. These are well-known in the physics literature (see,
for instance, [15, 65]), but they are also computed in [59]. In particular, when n > 2
and n 6= 4, we have

g(0) =−dt2 + γ̊ , g(2) =−1
2
(dt2 + γ̊), g(n) =

M
n
[(n−1)dt2 + γ̊]. (9)

Note g(0) is the same for all Schwarzschild-AdS metrics, and the mass M is encoded
in g(n).
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2.3 Gauge Transformations

Though the partial FG expansions of Theorem 2.1 capture near-boundary geome-
tries of vacuum FG-aAdS segments, they fail to account for one additional gauge
freedom in our setting. The issue is that Definition 1 of FG-aAdS segments presup-
poses a choice of FG gauge. However, there does exist a nontrivial class of transfor-
mations ρ 7→ ρ̄ of the boundary defining function that preserve the form (1) of the
FG gauge.

The key observation is that (1) can be achieved by any function ρ̄ satisfying

ρ̄ > 0, lim
ρ↘0

ρ̄ = 0, ρ̄
−2 g(dρ̄,dρ̄) = 1. (10)

(The critical condition is that the ρ̄−2g-gradient of ρ̄ is unit, while the other com-
ponents are then transported along the integral curves of this gradient; see [29] for
details.) Adopting the ansatz

ρ̄ = eaρ ,

then (10) reduces to fully nonlinear initial-value problem

(2+ρLρ a)Lρ a+ρ g−1(Da,Da) = 0,

which can be uniquely solved from ρ = 0 using the method of characteristics. This
implies that for any a ∈ C∞(I ), one can find a unique FG gauge, with boundary
defining function ρ̄ , such that

lim
ρ↘0

ρ̄

ρ
= ea. (11)

Remark 13. Using an appropriate isometry, one can then formulate the FG gauge de-
fined with respect to ρ̄ as an FG-aAdS segment (at least near the conformal bound-
ary).

Of course, these different FG gauges represent the same physical object, since
they are different representations of the same spacetime. On the other hand, a change
of FG gauge ρ 7→ ρ̄ induces a corresponding transformation of the partial FG expan-
sion. For instance, one can show that for the FG change satisfying (11), the boundary
metric g(0) undergoes a conformal transformation:

g(0) 7→ ḡ(0) = e2ag(0). (12)

In other words, only the conformal class [g] of the boundary metric can be invari-
antly associated with a given aAdS spacetime; this motivates the term “conformal
boundary" for (I ,g).

The other coefficients in (4) are also transformed via changes of FG gauge (see
[22, 41]), though the explicit formulas quickly become complicated. In general,
there do exist explicitly computable (given enough effort) universal functions such
that the FG coefficients transform as
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g(2k) 7→ ḡ(2k) = G 2k
n (∂≤2ka,∂≤2kg(0)), (13)

g(?) 7→ ḡ(?) = G ?
n (∂

≤na,∂≤ng(0)),

g(n) 7→ ḡ(n) = G n
n (∂

≤na,∂≤ng(0),g(n)),

where 0 ≤ 2k < n. (In particular, −g(2) transforms like the Schouten tensor when
n≥ 3.)

The physical significance, then, is that pairs (g(0),g(n)) and (ḡ(0), ḡ(n)) that are
related via (12) and (13) should be viewed as “the same", since they arise from the
same aAdS spacetime:

Definition 3. Let (I ,g(0),g(n)), (Ī , ḡ(0), ḡ(n)) denote holographic data, and let φ :
I ↔ Ī be a diffeomorphism. We say that (I ,g(0),g(n)) and (Ī , ḡ(0), ḡ(n)) are φ -
gauge-equivalent on D ⊂ I iff there exists a ∈ C∞(I ) such that the following
relations hold:

φ∗ḡ
(0)|D = e2ag(0)|D , φ∗ḡ

(n)|D = G n
n (∂

≤na,∂≤ng(0),g(n))|D . (14)

Remark 14. As usual, φ∗ in (14) denotes the pullback of φ . In practice, by pulling
back through φ , we can always restrict to the case in which Ī = I and φ is the
identity map.

2.4 The Vertical Tensor Calculus

This subsection is devoted to a more detailed discussion of the main quantities we
will analyze—vertical tensor fields. We remark that readers who are only interested
in the statement of the main result and its corollaries can skip this part entirely. On
the other hand, the contents here will be relevant to the proof of the main result.

We begin with a precise definition of vertical tensor fields:

Definition 4. Let (M ,g) be an FG-aAdS region. Then:

• The vertical bundle Vk
l M of rank (k, l) over M is defined to be the manifold

consisting of all tensors of rank (k, l) on each level set of ρ in M :

Vk
l M =

⋃
σ∈(0,ρ0]

T k
l {ρ = σ}. (15)

• A section of Vk
l M is called a vertical tensor field of rank (k, l).

In short, a vertical tensor field on M is a tensor field that is entirely tangent in
every component to the level sets of ρ . Observe also that vertical tensor fields can
be equivalently characterized as a family, parametrized by ρ , of tensor fields on
I . In particular, the second interpretation provides a natural notion of limits at the
conformal boundary—for a vertical tensor field A = A(ρ), its limit as ρ↘ 0 (when
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exists) is simply a tensor field of the same rank at I . This allows one to easily
connect quantities in the bulk spacetime with those on the conformal boundary.

One basic example of a vertical tensor field is the vertical metric g = g(ρ) in
(1). Note that the boundary limit of g is the conformal boundary metric g = g(0).
Moreover, g induces a notion of vertical covariant derivative D; more specifically,
since g(ρ) is a Lorentzian metric for each ρ , we can define D by aggregating the
Levi-Civita connections of all the g(ρ)’s.

Analogues of vertical tensor fields have been widely used in mathematical rela-
tivity; these have sometimes been referred to as horizontal tensor fields. (Common
examples include the connection and curvature components on level spheres in a
double null foliation.) However, we will also extend these ideas in some novel ways
in order to reach our main results.

Remark 15. We adopt the term “vertical" rather than “horizontal" here, since the hy-
persurfaces in our foliation—the level sets of ρ—are timelike rather than spacelike.

In particular, since tensorial wave equations play a key role in the proofs of our
results, we will want to make sense of a spacetime wave operator �̆g applied to ver-
tical tensor fields. Furthermore, we aim to do this in a covariant manner, so that the
usual operations of geometric analysis—e.g. Leibniz rules, integrations by parts—
continue to hold. The upshot is that we will be able to treat vertical tensor fields
covariantly, in nearly the same manner as we do scalar fields.

We achieve these goals in a series of steps, with the first being to make sense
of first spacetime covariant derivatives of vertical tensor fields. While the vertical
connection D already makes sense of derivatives in vertical directions, we now want
to also extend D to the ρ-direction. There are many ways to accomplish this, the
standard approach being to define Dρ as an appropriate projection of the g-covariant
derivative. However, here we elect to do this differently, by instead projecting the
ρ2g-covariant derivative. This is primarily a matter of convenience, since ρ2g is
well-defined at the conformal boundary, so this definition yield formulas with fewer
singular weights. Observe that, crucially, this extended covariant derivative remains
torsion-free:

Dρ g = 0.

However, the key issues arise from making proper sense of second spacetime
derivatives of vertical tensor fields. To do this covariantly, one requires a small
detour—we must extend our vertical tensor calculus to mixed tensor fields, con-
taining both spacetime and vertical components:

Definition 5. Let (M ,g) be an FG-aAdS segment. Then:

• We define the mixed bundle of ranks (κ,λ ;k, l) over M to be the tensor product
bundle

T κ

λ
Vk

l M := T κ

λ
M ⊗Vk

l M . (16)

• We refer to sections of T κ

λ
Vk

l M as mixed tensor fields of ranks (κ,λ ;k, l).
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The tensor product structure of the mixed bundles induces a natural notion of co-
variant derivative ∇̆ for mixed tensor fields—in short, ∇̆ acts like the spacetime con-
nection ∇ on spacetime components and like the vertical connection D on vertical
components. This behavior can be generated from the following defining relation,
which can be shown to uniquely define ∇̆: given any vector field X on M , tensor
field G on M , and vertical tensor field B, we set

∇̆X (G⊗B) := ∇X G⊗B+G⊗DX B.

The torsion-free property extends also to the mixed connection ∇̆. As both the
spacetime metric g and the vertical metric g are mixed tensor fields, our definition
of ∇̆ immediately implies

∇̆g = 0, ∇̆g = 0.

Mixed bundles allow us to now covariant define a spacetime Hessian of a ver-
tical tensor field A, say of rank (k, l). Recall that the first derivative ∇̆A is simply
the extended vertical connection applied to A. The trick is now to view ∇̆A as a
mixed tensor field of rank (0,1;k, l). The Hessian ∇̆2A is then naturally defined as
∇̆ applied to the mixed tensor field ∇̆A.

Finally, for the wave operator, since ∇̆2A is a mixed tensor field of rank (0,2;k, l),
we can simply define �̆gA as the g-trace of ∇̆2A along the two spacetime compo-
nents.

Remark 16. Since all our connections, by their construction, satisfy the requisite
Leibniz rules and are torsion-free, then, with regards to integration by parts, we can
treat both vertical and mixed tensor fields in the same way that we treat scalar fields
and spacetime tensor fields.

Remark 17. Mixed tensor fields and extended wave operators �̆g originated from
[58]; for aAdS contexts, an earlier formulation using horizontal tensor fields was
used [35, 36]. (Similar notions were also independently developed and used in [44].)
The full vertical (and mixed) tensor calculus, in the form shown here, was first
constructed in [55, 59] and then used in [20, 37].

3 The Main Result

Having provided, in Section 2, a more complete description of our aAdS spacetimes
and their properties, we can now return to the main correspondence question posed
in this article. In particular, we can now give a more precise formulation of Problem
2:

Problem 3 (Correspondence). Let (M ,g) and (M̄ , ḡ) be two vacuum FG-aAdS
segments, and suppose that their respective associated holographic data, (I ,g(0),g(n))
and (Ī , ḡ(0), ḡ(n)), are gauge-equivalent. Then, must g and ḡ be isometric to each
other?



Correspondence and Unique Continuation 13

Compared to Problem 2, we have replaced the vague “aAdS spacetimes" with the
precisely defined FG-aAdS segments of Definition 1. Furthermore, the “conformal
boundary data" mentioned in Problem 2 have been clarified as holographic data, up
to gauge-equivalence.

A closely related question is that of symmetry extension—are (appropriately de-
fined) symmetries of the holographic data necessarily inherited by the bulk aAdS
spacetime? Using the terminology of Section 2, we can again provide a more pre-
cise statement:

Problem 4 (Symmetry Extension). Let (M ,g) be a vacuum FG-aAdS segment,
with holographic data (I ,g(0),g(n)). If ψ is a symmetry of (I ,g(0),g(n)) (that is, a
diffeomorphism ψ : I ↔ I that preserves g(0) and g(n) up to gauge-equivalence),
then must ψ extend to a isometry of g?

Our main result, Theorem 3.2 below, will give a positive resolution to Problem
3. Answers to Problem 4 will then follow as corollaries; see Theorems 3.3 and 3.4.

3.1 Previous Literature

Before stating our main theorems, we first review some of the existing literature
related to Problems 3 and 4, starting with stationary settings.

First, Biquard [16] positively answered the Riemannian analogue of Problem
3. More specifically, [16] considered asymptotically hyperbolic Einstein manifolds
(N,h), which have both a conformal boundary (∂N,h) and an analogous Fefferman-
Graham expansion from ∂N. The main result of [16] then showed that the free coef-
ficients (h(0),h(n)) in the FG expansion uniquely determine the metric h on N. The
key technical tool in the proof is a unique continuation result of Mazzeo [53] from
the conformal boundary of asymptotically hyperbolic manifolds.

A similar correspondence result, also for (Riemannian) asymptotically hyper-
bolic Einstein manifolds, was established independently by Anderson and Herzlich;
see [12, 13]. Notice that in each of the results [12, 13, 16], the key PDEs are always
elliptic in nature.

Next, the methods of [16] were adapted by Chrusciel and Delay [21] to Lorentzian
aAdS spacetimes, under the specific restriction that the spacetime is stationary.
More specfically, [21] showed that if (M ,g) is time-independent, then g is indeed
uniquely determined by its holographic data (I ,g(0),g(n)). Furthermore, using simi-
lar techniques, [21] positively addressed Problem 4 in stationary settings—if (M ,g)
is time-independent, then any Killing vector field on the conformal boundary that
also preserves g(n) necessarily extends into M as a Killing field for g.

Remark 18. Even though [21] treated Lorentzian settings, the assumption of time-
independence meant that all the key PDEs are elliptic. Thus, there remains a funda-
mental gap between [21] and the questions posed here in general dynamical settings,
which instead involve hyperbolic PDEs.
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In addition, we mention, again in the Riemannian context, the classical result
of Graham and Lee [30], which proved the existence of asymptotically hyperbolic
Einstein metrics on the Poincaré ball Bn, with prescribed metric h(0) on the confor-
mal boundary Sn−1 that is sufficiently close to the round metric. Observe, however,
that the above corresponds to solving an elliptic Dirichlet problem, which has no
analogue in hyperbolic contexts.

We now turn our attention to dynamical Lorentzian settings. First, Anderson [11]
partly showed that if a vacuum aAdS spacetime (M ,g) has a stationary conformal
boundary and becomes asymptotically stationary as t→±∞, then (M ,g) must itself
be stationary. However, the result in [11] is conditional, in that it assumes that a
unique continuation property holds for the linearized Einstein equations from the
conformal boundary. In particular, this unique continuation condition was crucially
used to prove a symmetry extension result, in the sense of Problem 4, for timelike
Killing vector fields from the conformal boundary into the bulk spacetime.

Remark 19. The main symmetry extension result of this article, Theorem 3.4, can be
applied in [11] to prove an improved, unconditional version of Anderson’s theorem.

The first concrete steps toward resolving Problem 3, as well as a precursor to
the main result of this article, was provided by McGill [54], which gave a holo-
graphic characterization of locally AdS spacetimes. Very roughly, [54] established
the following:

Theorem 3.1 ([54]). Let (M ,g) be a vacuum FG-aAdS segment with the AdS con-
formal boundary (IAdS,gAdS). Then, (M ,g) is locally isometric to AdS spacetime
(at least close to the conformal boundary) if and only if both g(0) is conformally flat
and g(n) = 0 on a sufficiently large timespan of the conformal boundary. Further-
more, the above criteria for g(0) and g(n) are gauge-invariant, in the sense that they
are preserved by gauge transformations.

McGill’s result was proved using the same setting and tools [35, 36, 55, 59] as our
main theorems, most notably the Carleman estimates for tensorial waves near aAdS
conformal boundaries. One key step is a unique continuation result for the space-
time Weyl curvature, which satisfies a tensorial wave equation, and whose vanishing
ensures the spacetime is locally AdS. In particular, [54] represented the first appli-
cation of the Carleman estimates of [35, 36, 55] to the EVE, and it demonstrated
that these estimates are indeed powerful enough to treat the EVE.

More generally, symmetry extension results for Killing vector fields have seen
several applications in general relativity, outside of aAdS settings. For instance,
Killing extension theorems have played a crucial role in recent black hole rigidity
results [3, 4, 5, 28, 43, 47, 70], which showed, in various circumstances, that vac-
uum (or electrovacuum) stationary spacetimes must be isometric to Kerr (or Kerr-
Newman) spacetime. Next, [56] proved a Killing extension theorem from compact
Cauchy horizons, which can then be applied to questions in both black hole rigid-
ity and cosmic censorship. Furthermore, the results in [6] proved non-existence of
time-periodic vacuum asymptotically flat spacetimes; a key step is a Killing exten-
sion theorem from spacelike and null infinity.
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3.2 Correspondence Results

The main result of this article provides an affirmative answer to Problem 3, provided
the conformal boundary also satisfies a gauge-invariant geometric condition. We
refer to this extra assumption, which in its current form was first identified and
formulated by Chatzikaleas and the author in [20], as the generalised null convexity
criterion, or GNCC.

We will define and further discuss the GNCC (which can seem quite technical at
first glance) in the following subsection. But before doing so, let us first state our
main result:

Theorem 3.2 (Bulk-boundary correspondence [37]). Let n > 2, and let (M ,g)
and (M̄ , ḡ) denote vacuum FG-aAdS segments, with associated holographic data
(I ,g(0),g(n)) and (Ī , ḡ(0), ḡ(n)), respectively. In addition, fix D ⊂ I with D̄ com-
pact, and assume (D ,g(0)) satisfies the GNCC.

Then, if (I ,g(0),g(n)) and (Ī , ḡ(0), ḡ(n)) are φ -gauge-equivalent on D , then there
exist two neighborhoods U ⊂M and Ū ⊂ M̄ —of {0} ×D and {0} × φ(D),
respectively—as well as an isometry Φ : (U ,g)↔ (Ū , ḡ) whose limit at the con-
formal boundary is φ .

In particular, Theorem 3.2 shows that the near-boundary vacuum aAdS geome-
tries (up to isometry) are in one-to-one correspondence with the space of holo-
graphic data (up to gauge-equivalence).

Remark 20. That D in Theorem 3.2 satisfies the GNCC can be interpreted as D
being “sufficiently large" compared to the geometry of (I ,g(0)). In other words, the
correspondence result holds only when the holographic data match (up to gauge) on
a sufficiently large boundary region.

Remark 21. As GNCC is a gauge-invariant condition (see Proposition 1 below), then
(D ,g(0)) satisfying the GNCC is equivalent to (φ(D), ḡ(0)) satisfying the GNCC.
In other words, all assumptions on the conformal boundaries in Theorem 3.2 are
gauge-invariant.

Remark 22. Note the correspondence described in Theorem 3.2 is local, as the FG-
aAdS segments are only isometric near the subregions D and φ(D) of the conformal
boundaries. In particular, one needs additional information to prove a global corre-
spondence.

Remark 23. By pulling back through φ , we can, without loss of generality, reduce
Theorem 3.2 to the case in which M̄ = M , Ī = I , and φ is the identity map on
I ; see the beginning of Section 5. In fact, the main result of [37] is only formulated
in this special case. We state the general case in Theorem 3.2 in order to highlight
the geometric and gauge-covariant nature of the result.

Remark 24. The main result Theorem 3.1 of [54] can be viewed as a special case of
Theorem 3.2, for spacetimes that are locally isometric to AdS. Furthermore, the as-
sumption in Theorem 3.1 of “sufficiently large timespan of the conformal boundary"
is a direct consequence of the GNCC.
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Next, one important application of Theorem 3.2 is toward proving symmetry ex-
tension results on aAdS spacetimes, which address Problem 4. The first such result
deals with extending discrete symmetries from the conformal boundary into the bulk
spacetime:

Definition 6. Let (I ,g(0),g(n)) denote holographic data, and fix D ⊂ I with D̄
compact. We say that ψ : I ′ → I , where D̄ ⊂ I ′ ⊂ I , is a holographic gauge
symmetry on D iff (I ′,g(0),g(n)) and (ψ(I ′),g(0),g(n)) are ψ-gauge-equivalent on
D . If ψ satisfies, in addition,

ψ∗g
(0)|D = g(0)|D , ψ∗g

(n)|D = g(n)|D . (1)

then ψ is called a holographic symmetry on D .

Informally, a holographic gauge symmetry is a diffeomorphism within I that
preserves g(0) and g(n) up to gauge-equivalence, while a holographic symmetry pre-
serves g(0) and g(n) entirely.

Theorem 3.3 (Extension of symmetries [37]). Let n > 2, and let (M ,g) be a vac-
uum FG-aAdS segment, with holographic data (I ,g(0),g(n)). Also, fix D ⊂I with
D̄ compact, and assume (D ,g(0)) satisfies the GNCC. Then, if ψ is a holographic
gauge symmetry on D , then there is a neighborhood U ⊂M of {0}×D such that
ψ extends to an isometry Ψ between (U ,g) and (Ψ(U ),g).

Proof. This follows immediately from Theorem 3.2—assuming ψ : I ′ → I ,
where D̄ ⊂I ′ ⊂I , then we simply apply Theorem 3.2 to the vertical truncations
of M to I ′ and ψ(I ′). ut

Remark 25. If ψ in Theorem 3.3 is, in addition, a holographic symmetry on D , then
the desired isometry Ψ can be given explicitly in terms of ψ by

Ψ(ρ, p) = (ρ,ψ(p)), (ρ, p) ∈U ⊂M . (2)

Another variant (as well as a direct corollary) of Theorem 3.3 concerns extending
a smooth family of symmetries, in the form of a Killing vector field. This is stated
in the subsequent theorem, which, on its own, can also be seen as an analogue of
the symmetry extension results [3, 6, 28, 43, 56], but in the setting of conformal
boundaries of vacuum aAdS spacetimes.

Definition 7. Let (I ,g(0),g(n)) denote holographic data, and fix D ⊂ I with D̄
compact. We say that a vector field K on I ′, where D̄ ⊂ I ′ ⊂ I , is holographic
gauge Killing on D iff there exist holographic data (Ī , ḡ(0), ḡ(n)) that is φ -gauge-
equivalent to (I ,g(0),g(n)) and such that

Lφ∗Kḡ
(0)|φ(D) = 0, Lφ∗Kḡ

(n)|φ(D) = 0. (3)

Furthermore, K is called holographic Killing on D iff

LKg
(0)|D = 0, LKg

(n)|D = 0. (4)
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Remark 26. As is standard, φ ∗K denotes the push-forward of K through φ .

Informally, a holographic Killing vector field K preserves g(0) and g(n) along its
integral curves, while a holographic gauge Killing field only preserves g(0) and g(n)

up to gauge-equivalence.

Theorem 3.4 (Extension of Killing vector fields [37]). Let n> 2, and let (M ,g) be
a vacuum FG-aAdS segment, with holographic data (I ,g(0),g(n)). Fix D ⊂I with
D̄ compact, and assume (D ,g(0)) satisfies the GNCC. Then, if K is a holographic
gauge Killing vector field on D , then there is a neighborhood U ⊂M of {0}×D
such that K extends to a (g-)Killing vector field K on U .

Proof. By pushing through the gauge transformation φ in Definition 7 and relying
on Theorem 3.2, we can reduce to the case in which K is holographic Killing on
D and (4) holds. Let ψs, for small s ∈ R, be the family of holographic symmetries
generated by transporting along the integral curves of K. By Theorem 3.3, these
extend to a family of g-isometries Ψs in the bulk spacetime. The Killing vector field
K is then obtained as the generator of the isometries Ψs. ut

One immediate consequence of Theorem 3.4 and the classical Birkhoff theorem
is the following holographic rigidity result for Schwarzschild-AdS spacetimes:

Corollary 1 (Rigidity of Schwarzschild-AdS spacetime). Let n> 2, and let (M ,g)
be a vacuum FG-aAdS segment, with holographic data (IAdS,g

(0),g(n)). Also, fix
D ⊂ I with D̄ compact, and assume (D ,g(0)) satisfies the GNCC. If (g(0),g(n)) is
spherically symmetric on D , then there is a neighborhood U of {0}×D such that
(U ,g) is isometric to part of a Schwarzschild-AdS spacetime.

Remark 27. If one takes the AdS conformal boundary, g(0) = gAdS, in Corollary 1,
then its conclusions hold with D := {t− < t < t+} whenever t+− t− > π; see Propo-
sition 2 below.

Finally, note that Theorem 3.3 also can be applied toward discrete symmetries
that are not generated by Killing vector fields. In particular, one consequence of
Theorem 3.3 is that time periodicity of the conformal boundary is inherited by the
bulk spacetime:

Corollary 2 (Extension of time periodicity). Let n > 2, and let (M ,g) denote a
vacuum FG-aAdS segment, with holographic data (I ,g(0),g(n)). In addition, fix D ⊂
I with D̄ compact, and assume that (D ,g(0)) satisfies the GNCC. If (g(0),g(n)) is
time-periodic on D , then there exists a neighborhood U of {0}×D such that (U ,g)
is also time-periodic.

3.3 Null Convexity Criteria

Having stated our key results, we now turn our attention toward the crucial geomet-
ric assumption required for these results—the GNCC of [20]. The first task is to
state the GNCC, adapted here to the special case of vacuum aAdS spacetimes:
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Definition 8 (GNCC [20]). Let (I ,g) be an n-dimensional Lorentzian manifold,
and fix any Riemannian metric h on I . In addition, fix an open subset D ⊂I , with
D̄ compact. We say that (D ,g) satisfies the generalized null convexity criterion
(abbreviated GNCC) iff there is a C4-function η , defined on a neighborhood of D̄ ,
such that the following hold:

• η > 0 on D .
• η = 0 on the boundary ∂D .
• There exists c > 0 such that the following holds on D for any g-null vector field

Z,
(D2

η +η ·P[g])(Z,Z)> cη ·h(Z,Z), (5)

where D2 and P[g] denote the Hessian and Schouten tensor with respect to g,
respectively.

Remark 28. Note Definition 8 is independent of the choice of h, since D̄ is compact.
Moreover, observe that P[g] in (5) can be replaced by 1

n−2 Ric[g], since their differ-
ence is proportional to g—see (6)—and hence vanishes along all g-null directions.

Remark 29. The GNCC can be extended to FG-aAdS segments that are not vacuum
by replacing the Schouten tensor P[g] in (5) with −g(2). (Note the general case
reduces to Definition 8 in vacuum settings due to (6).) This is the GNCC that was
stated in [20].

One important feature of the GNCC is that it is a conformally invariant property.
In particular, [20, Proposition 3.6] showed, in the context of Definition 8, that if
(D ,g) satisfies the GNCC, with associated function η , then (D ,e2ag) also satisfies
the GNCC, with associated function η ′ := eaη . We can immediately rephrase the
above in terms of our holographic gauge-invariance.

Proposition 1. Let (I ,g(0),g(n)), (Ī , ḡ(0), ḡ(n)) denote holographic boundary data,
and suppose (I ,g(0),g(n)), (Ī , ḡ(0), ḡ(n)) are φ -gauge-equivalent. Moreover, let
D ⊂ I be open, with D̄ compact. Then, (D ,g(0)) satisfies the GNCC if and only
if (φ(D), ḡ(0)) satisfies the GNCC.

The main significance of the GNCC, demonstrated in [20], is that it provides the
crucial conditions on the conformal boundary that lead to pseudoconvexity in the
near-boundary aAdS geometry. This observation was a crucial ingredient in proving
the Carleman estimates of [20] for tensorial waves on FG-aAdS segments. These
Carleman estimates, in turn, serve as a key tool in the proof of Theorem 3.2. See
Sections 4 and 5 for further discussions of these points.

Definition 8 may seem, at first glance, rather abstract and technical. Furthermore,
the conditions for the GNCC, which involve finding a desirable candidate function
η , can be rather difficult to check in practice. Therefore, to further flesh out Defini-
tion 8, we consider, in the remainder of this subsection, the GNCC applied to some
special cases of interest.

Let us begin with the standard AdS conformal boundary (IAdS,gAdS) of (6),
which satisfies
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gAdS =−dt2 + γ̊ , P[gAdS] =
1
2
(dt2 + γ̊). (6)

In addition, we take D := D0 to be the time slab

D0 := (t−, t+)×Sn−1, ∂D0 = {t−, t+}×Sn−1, t− < t+. (7)

The following observation was established in [20, Corollary 3.14]:

Proposition 2 ([20, 35]). (D0,gAdS) satisfies the GNCC if and only if t+− t− > π .

Proof. The key observation is that by taking η to depend only on t, then (5) and (6)
yield

(D2
η +η ·P[g])(Z,Z) = (Zt)2 (η̈ +η). (8)

Then, one can directly check that the choice

η(t) := sin
(

π · t− t−
t+− t−

)
satisfies the conditions of Definition 8 whenever t+− t− > π . (Observe t+− t− > π

is needed for the right-hand side of (8) to be positive when t− < t < t+.)
For the converse, the basic idea is that one can apply a standard Sturm compari-

son argument with the function sin(πt) to show that if η := η(t) satisfies

η(t±) = 0, η |(t−,t+) > 0, η̈ +η > 0,

then t+− t− > π . In particular, this, along with (8), shows that no function of the
form η = η(t) can satisfy the conditions of Definition 8 whenever t+ − t− ≤ π .
Moreover, the above argument can be adapted to general functions η , from which
one concludes that (D0,gAdS) cannot satisfy the GNCC whenever t+− t− ≤ π; see
[20, Lemma 3.7] for details. ut

Remark 30. Note that Proposition 2 applies to AdS spacetime, as well as every
Schwarzschild-AdS and Kerr-AdS spacetime, since these all induce the AdS con-
formal boundary.

Remark 31. The key consequence of Proposition 2—that unique continuation for
wave equations holds from D0 when t+− t− > π—was first proved as a special case
of the results of [35].

Next, we consider general conformal boundary domains that are foliated by a
time function t,

I∗ := Rt ×S , D∗ := (t−, t+)×S , (9)

with S a compact manifold of dimension n− 1. Previous versions of Carleman
estimates and unique continuation results for wave equations were developed in
the setting (9), under conditions on the conformal boundary that can be viewed as
special cases of the GNCC.
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First, Holzegel and the author [35] treated the case in which the metric g is static
(with time function t), establishing Carleman estimates and unique continuation un-
der a so-called pseudoconvexity criterion. In particular, this was the first unique
continuation result for wave equations from aAdS conformal boundaries. The result
was subsequently extended by Holzegel and the author [36] to some non-static g,
and then by McGill and the author [55] to a wider class of non-static g and time
foliations and under a slightly weaker conformal boundary criterion.

Let us focus on the key criterion of [55], as well as its relation to the GNCC:

Proposition 3 ([20, 55]). Assume the setting of (9), and let g be a Lorentzian metric
on I∗. Suppose there exist 0 ≤ B < C such that the following holds for any g-null
vector field Z:

P[g](Z,Z)≥C2 · (Zt)2, |D2t(Z,Z)| ≤ 2B · (Zt)2. (10)

Then, (D∗,g) satisfies the GNCC as long as t+− t− is large enough (depending on
B and C).

Proof. The process is similar to the proof of Proposition 2, except one now chooses
η (still depending only on t) to roughly solve a damped harmonic oscillator:

η̈−2b|η̇ |+ c2
η = 0, B≤ b < c <C. (11)

The reader is referred to [20, Proposition 3.13] for details. ut

Remark 32. The second condition of (10) can be viewed as a bound on the non-
stationarity of g, since D2t is proportional to the Lie derivative of g along the gradi-
ent of t.

Remark 33. The connection between damped harmonic oscillators (11) and unique
continuation from D∗ was first illuminated in [36]; see the discussions therein.

Remark 34. Proposition 3 can be used to generalize the conclusions of Proposition
2:

• For instance, if t+− t− > π , then Proposition 3 implies that (D0,g) satisfies the
GNCC whenever g is a sufficiently small perturbation of gAdS.

• If g is static with respect to t, and if the cross-sections S have positive Ricci
curvature, then (D∗,g) satisfies the GNCC for sufficiently large t+− t−; see [36,
Proposition B.2].

The conditions (10) were first identified in [55] and were called the null con-
vexity criterion (or NCC). In particular, [55] established Carleman estimates and
unique continuation results, under the assumption that the NCC is satisfied. Note
that Proposition 3 shows that the GNCC indeed generalizes the NCC. Furthermore,
the GNCC removes the need for a predetermined time function and allows for a
larger class of boundary domains D to be treated.

One advantage of the NCC (10) is that it is more concrete and easier to check
than the GNCC. On the other hand, one shortcoming of the NCC is that (10) fails
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to be gauge-invariant, since a conformal transformation of g can cause (10) to no
longer hold. This makes the NCC undesirable for Theorem 3.2, and this served as a
key motivation for developing the GNCC.

3.4 Geodesic Return

While the GNCC provides a sufficient condition for Theorem 3.2, due to its connec-
tion to pseudoconvexity and to Carleman estimates for wave equations, one can also
make a heuristic case that the GNCC may be a necessary condition for Theorem 3.2.

The necessity of some geometric condition in Theorem 3.2 was first conjectured
in [35, 36], due to the special properties of AdS geometry near its conformal bound-
ary IAdS. More specifically, on AdS spacetime, there exist null geodesics which
initiate from IAdS at time t = 0, remain arbitrarily close to IAdS, and then termi-
nate at the boundary at time t = π; see [35, Section 1.2].

Remark 35. In terms of the standard conformal embedding of AdS spacetime into
the Einstein cylinder Rt ×Sn

+, these null geodesics can be explicitly described as

Λ : (0,π)→ R×Sn
+, Λ(τ) = (τ,λ (τ)),

where λ denotes unit speed parametrizations of great circles in Sn
+, with the limits

λ (0+) and λ (π−) lying on antipodal points of the equator ∂Sn
+. The near-boundary

trapping effect caused by these Λ is also connected to the relative lack of decay for
waves on AdS spacetime; see, e.g., [38].

From the above, one can construct, via the geometric optics methods of Alinhac
and Baouendi [10], local solutions to linear wave equations on AdS spacetime that
propagate along these null geodesics. Most notably, these solutions vanish to infinite
order toward the portion (0,π)×Sn−1 of the conformal boundary, but immediately
become nonzero away from this boundary segment. This yields, for AdS spacetime,
counterexamples to unique continuation for various wave equations when the data
on the conformal boundary is imposed on a timespan of less than π—the return time
of the above-mentioned near-boundary null geodesics.

On the other hand, if we consider a slab D0 as in (7), with timespan t+− t− > π ,
then none of the aforementioned null geodesics (translated forward or backward in
time as needed) can travel entirely over D0. In fact, if such a geodesic goes over D0
at all, then it must either start from or terminate at D0. From this, one concludes that
the Alinhac-Baouendi counterexamples cannot be constructed over the time slab D0
whenever t+− t− > π .

Remark 36. There are multiple important caveats regarding the preceding coun-
terexamples. The first is that the methods of [10] only apply directly to wave op-
erators �g +σ with 4σ := n2− 1. (For other values of σ , the corresponding wave
equation in the conformally compactified setting gains a potential that becomes crit-
ically singular at the conformal boundary, which significantly complicates the con-
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structions.) The case of general σ will be treated in the upcoming work of Guisset
[33].

Remark 37. Another caveat is that not every linear wave equation on AdS spacetime
can have these counterexamples to unique continuation. For example, from Holm-
gren’s theorem [34, 39], if all the coefficients of the wave equation are real-analytic
(in particular, this applies to (�g +σ)u = 0), then counterexamples to unique con-
tinuation cannot exist. In particular, the constructions of [10] only show that there
exist potentials V (vanishing at the conformal boundary) such that

(�g +σ +V )u = 0

has the above-mentioned counterexamples to unique continuation, but it does not
address whether such counterexamples exist for any fixed, chosen potential V .

One can in fact view the GNCC as a generalization of the above intuitions for
AdS spacetime to aAdS settings. This was observed by Chatzikaleas and the author
in [20, Theorem 4.1], which connected the GNCC to the trajectories of spacetime
null geodesics near the conformal boundary. We restate the result here, but slightly
adapted to the special case of vacuum FG-aAdS segments:

Theorem 3.5 (Geodesic return [20, 55]). Let (M ,g) be a vacuum FG-aAdS seg-
ment, with holographic data (IAdS,g

(0),g(n)), and fix D ⊂ I , with D̄ compact, so
that (D ,g(0)) satisfies the GNCC. In addition, let Λ : (s−,s+)−→M be a complete
null geodesic with respect to ρ2g, written as

Λ(s) := (ρ(s),λ (s)) ∈ (0,ρ0)×I , s ∈ (s−,s+),

with s being an affine parameter for Λ . Assume also that

0 < ρ(s0)< ε0, |ρ̇(s0)|. ρ(s0), λ (s0) ∈D . (12)

for some s0 ∈ (s−,s+), where ε0 > 0 is sufficiently small (depending on g and D).
Then,

• either Λ initiates from the conformal boundary within D ,

lim
s↘s−

ρ(s) = 0, lim
s↘s−

λ (s) ∈D , (13)

• or Λ terminates at the conformal boundary within D ,

lim
s↗s+

ρ(s) = 0, lim
s↗s+

λ (s) ∈D . (14)

Remark 38. Since g and ρ2g have the same null geodesics, we can more usefully in-
terpret Λ in Theorem 3.5 as being a g-null geodesic. However, it is more convenient
to parametrize Λ with respect to ρ2g, since the conformal boundary is finite from
the perspective of ρ2g.
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Note that the first and third conditions of (12) mean that Λ is both “hovering
over D" and “ε0-close to D" at parameter s0. The second part of (12) can be viewed
as a necessary condition in order for Λ to remain similarly close to the conformal
boundary. Consequently, one can interpret Theorem 3.5 as saying that any spacetime
null geodesic Λ that is sufficiently close to the conformal boundary and that travels
over D (which satisfes the GNCC) must return to the conformal boundary within
D , in either the future or past direction. In other words, there cannot exist any null
geodesics sufficiently near the boundary that travel over D but do not terminate
within D itself.

In summary, we conclude that analogues of the Alinhac-Baouendi counterexam-
ples in AdS spacetime cannot be constructed over any D that satisfies the GNCC.

Remark 39. The first version of the geodesic return theorem was proven by McGill
and the author in [55, Theorem 4.5]. This showed that the NCC (10) being satisfied
implies that counterexamples to unique continuation cannot be constructed over the
slab D∗ in Proposition 3. One can hence view Theorem 3.5 as an extension of [55,
Theorem 4.5] to the GNCC.

To conclude, the preceding discussions provide two justifications for the GNCC
being the crucial condition for unique continuation and for Theorem 3.2:

• The GNCC rules out the known counterexamples to unique continuation for
waves.

• The GNCC implies pseudoconvexity, leading to positive unique continuation re-
sults.

Remark 40. Though the GNCC is crucial to our proof of Theorem 3.2, it is not
known whether the methods of [10] extend to the nonlinear EVE. The construc-
tion of counterexamples to unique continuation in Theorem 3.2 when the GNCC is
violated is a challenging open problem.

Finally, we note that this connection with null geodesics can, in some cases, be
exploited to show that some domains fail to satisfy the GNCC. The most notable
examples involve flat conformal boundaries, in particular those of the planar and
toric (Kerr-)AdS spacetimes:

Proposition 4. Consider the planar AdS and toric AdS conformal boundaries (2),
both with the flat Lorentzian metric. Then, no subdomain D of either boundary can
satisfy the GNCC.

The proof is similar to that of the “negative" half of Proposition 2; see [20, Corol-
lary 3.10]. The key intuition is that on both planar and toric AdS spacetimes, there
are spacetime null geodesics that remain arbitrarily close to but never intersect the
conformal boundary for all times.
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4 Carleman Estimates

As mentioned before, the main technical tool behind the proof of Theorem 3.2 is
a novel Carleman estimate for (vertical) tensorial wave equations near conformal
boundaries of FG-aAdS segments. Various versions of this Carleman estimate were
proved, in increasing levels of generality, in [35], [36], [55], and finally culminating
in [20] (which introduced the GNCC). In this section, we discuss the Carleman
estimate [20], along with some of the main ideas behind its proof.

4.1 Unique Continuation

Carleman estimates have long played a fundamental role in the theory of unique
continuation for PDEs. They have been spectacularly successful as tools for prov-
ing robust classes of unique continuation results that, in particular, do not require
any assumption of analyticity—in either the solution or the PDE. (This is in direct
contrast to the earliest techniques, through the Cauchy-Kovalevskaya and Holmgren
theorems.)

Applications of Carleman estimates to unique continuation began with the work
of Carleman [19], which proved strong unique continuation for elliptic equations in
2 dimensions. Further breakthroughs extending to elliptic PDEs in all dimensions
are attributed to Calderón [18] (for unique continuation from an open set or a hyper-
surface) and Aronszajn [14] (for strong unique continuation, i.e., from a point). The
classical unique continuation theory for more general equations—including wave
equations—is largely attributed to Hörmander; see [40].

In this classical theory, the key condition required for unique continuation is
pseudoconvexity. Roughly speaking, the result is that if u solves linear PDE L u= 0,
and if u has zero Cauchy data on a hypersurface Σ that is pseudoconvex with respect
to L and a given side of Σ , then u identically vanishes near Σ on the side indicated
by the pseudoconvexity. This result is proved by deriving a local Carleman estimate
near Σ , from which one then obtains unique continuation via a standard argument.
Furthermore, pseudconvexity has been shown to be crucial, as counterexamples to
unique continuation in its absence were constructed by Alinhac [9] and Alinhac-
Baouendi [10].

The reader is referred to [40, 48] for the general definition of pseudoconvexity (in
the language of microlocal analysis). Here, we focus exclusively on wave operators
on Lorentzian manifolds. In this case, one can give a geometric characterization of
pseudoconvexity:

Definition 9 ([50]). Let (M,g) be a Lorentzian manifold, and consider a hypersur-
face

Σ := { f = 0} ⊂M,

which is a level set of a function f on M. We say that Σ is pseudoconvex (with
respect to the wave operator �g and the direction of increasing f ) if for any vector
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field Z on Σ satisfying
Z f = 0, g(Z,Z) = 0, (1)

the following inequality holds (with ∇2 denoting the Hessian with respect to g):

∇
2 f (Z,Z)< 0. (2)

To summarize, Σ is pseudoconvex if − f is convex on Σ with respect to all null
directions that are tangent to Σ . One qualitative interpretation of this is as follows:
if Λ is a null geodesic that goes through p ∈ Σ and is tangent to Σ at p, then Λ lies
on the side { f < 0} near p.

With regards to the wave operator �g on M, a Carleman estimate roughly takes
the form

λ

∫
Ω

e−λF(|u|2 + |∇u|2)dg.
∫

Ω

e−λF |�gu|2 dg. (3)

Here, Ω ⊂ M is a spacetime domain, and both integrals are with respect to the
volume form induced by g. Thus, one can view (3) as a spacetime weighted H1-
bound for solutions u of wave equations. A key feature of (3) is the parameter λ > 0,
which can be freely chosen as long as it is sufficiently large. Finally, regarding
the weight e−λF , its main component is a function F that is constructed from the
function f (in Definition 9) defining the pseudoconvex hypersurface Σ .

The free parameter λ plays a special role, as it allows one to absorb any lower-
order terms arising from the right-hand side into the left-hand side. To obtain unique
continuation from (3), the very rough idea is to apply the wave equation to reduce
the right-hand side of (3) into lower-order quantities, which can then be absorbed
into the left. Afterwards, one can then conclude that u = 0 by letting λ ↗ ∞. See
the end of Section 5 for a demonstration of this process.

Remark 41. In contrast, for elliptic equations, every hypersurface Σ is trivially pseu-
doconvex. Thus, in elliptic settings, one immediately bypasses any difficulties from
pseudoconvexity.

The main difficulty in our setting is that the conformal boundary of an FG-aAdS
segment (M ,g) fails to be pseudoconvex, so the classical unique continuation re-
sults no longer apply. To see this, one can observe that there exist null geodesics
near the conformal boundary that asymptote toward being everywhere tangent to
the boundary. By the above intuition, we can hence view the conformal boundary as
being zero-pseudoconvex, as it just barely fails to be pseudoconvex.

Remark 42. Note that pseudoconvexity is a conformally invariant property, so we
can realize the conformal boundary by working with the rescaled metric ρ2g.

Some early results that included zero-pseudoconvex settings are found in [45,
50]. However, the modern machinery for deriving Carleman estimates (and hence
unique continuation) for geometric wave equations in zero-pseudoconvex settings
originated from works of the author with Alexakis and Schlue [7, 8], in the context
of unique continuation of waves from null infinities of asymptotically flat space-
times. Similar results were later (independently) established by Petersen [56] for
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compact Cauchy horizons. Our aAdS Carleman estimates [20, 35, 36, 55] also fit
within this framework.

One encounters a number of additional difficulties when dealing with a zero-
pseudoconvex hypersurface Σ . In this case, a much more careful study of the geom-
etry near Σ is needed to find the requisite pseudoconvexity for a Carleman estimate.
Moreover, any pseudoconvexity (if exists) must necessarily degenerate toward Σ ,
and this leads to various vanishing or singular weights in the Carleman estimates,
making their proofs far more delicate.

Perhaps the most striking contrast with the classical theory is the size of the
region from which one can uniquely continue. The classical results are local, in
that one always attains unique continuation on sufficiently small neighbourhoods of
any point on the pseudoconvex hypersurface Σ . In contrast, for zero-pseudoconvex
Σ , Carleman estimates (and hence unique continuation properties) may only hold
along sufficiently large regions in Σ . This feature is exclusive to zero-pseudoconvex
settings, and it is particularly relevant to aAdS conformal boundaries.

Remark 43. There do exist stronger unique continuation results, for which one needs
far weaker assumptions than pseudoconvexity; see [42, 49, 57, 63, 64]. But, these re-
sults require either additional symmetries in the solution or some partial analyticity
in the differential operator. Unfortunately, neither of these assumptions is applicable
to our aAdS setting.

4.2 The Main Estimate

The difficulties and features mentioned above apply in particular to aAdS settings.
A key problem is to find a foliation of pseudoconvex hypersurfaces near the confor-
mal boundary. To find the boundary regions from which one can uniquely continue
solutions of wave equations, one must determine which regions can be covered by
such pseudoconvex foliations.

One important finding in aAdS settings, which is a hallmark of the Carleman
estimates presented here, is that whether appropriate pseudoconvex foliations ex-
ist near the conformal boundary depends on geometric properties of the boundary
itself —namely, the GNCC.

Let us now state the Carleman estimate proved in [20], again restricted to vacuum
settings:

Theorem 4.1 (Carleman estimate for wave equations [20]). Let (M ,g) denote a
vacuum FG-aAdS segment, with conformal infinity (I ,g). Fix D ⊂I , with D̄ com-
pact, and assume (D ,g) satisfies the GNCC, with the associated function denoted
by η (see Definition 8). Moreover, let

f =
ρ

η
, (4)

and define, for any f? > 0, the bulk regions
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Ω f? := { f < f?} ⊂M . (5)

Then, the following holds for any vertical tensor field Φ on M with Φ, ∇Φ van-
ishing on { f = f?},∫

Ω f?

e−
2λ f p

p f n−2−p−2κ |(�̆g +σ)Φ|2 dg (6)

+λ
3 limsup

ρ?↘0

∫
Ω f?∩{ρ=ρ?}

(|Dρ(ρ
−κ Φ)|2 + |D(ρ−κ Φ)|2 + |ρ−κ−1Φ|2)dg

& λ

∫
Ω f?

e−
2λ f p

p f n−2−2κ( f ρ
3|Dρ Φ|2 + f ρ

3|DΦ|2 + f 2p|Φ|2)dg,

provided κ and λ are sufficiently large (depending on g, D , σ , and the rank of Φ), f?
is sufficiently small (also depending on g, D , σ , and the rank of Φ), and 0 < p < 1

2 .

The statement of Theorem 4.1 is quite involved, so a number of remarks are in
order:

Remark 44. �̆g is the wave operator defined on vertical tensor fields; see Section 2.
Moreover, the norm | · | can be defined relative to a given Riemannian metric on the
space of vertical tensors.

Remark 45. The role of the Klein-Gordon mass σ in (6) is not superfluous. In par-
ticular, if we rewrite the wave operator with respect to ρ2g, where the conformal
boundary is finite, then�g+σ is equivalent to a wave operator�ρ2g+cσ ρ−2+ l.o.t.
with a singular potential, where cσ is a constant depending on σ . Furthermore, this
singular potential is “critical", in the sense that it scales in the same way as �ρ2g.
As a result, one must think of σ as a principal part of the wave operator.

The parameter σ also has a significant effect on the boundary asymptotics of
solutions u to

(�g +σ + l.o.t.)u = 0.

In particular, u near the conformal boundary will behave like specific powers of ρ ,
with the exponents determined by σ ; for details, see, for instance, discussions in
[17, 35].

Remark 46. In applications of Theorem 4.1, the boundary integral over Ω f? ∩{ρ =
0+} can be disregarded, as the Carleman estimate is generally applied to quantities
that vanish to sufficiently high order at the conformal boundary. Thus, the estimate
(6) takes the same qualitative form as (3), save for a few additional weights depend-
ing on f and ρ .

Central to Theorem 4.1 and its proof is the function f defined in (4). Note that the
level sets { f = f∗} of f , for f∗ > 0 sufficiently small, form timelike hypersurface
that “hover over" the region D . Furthermore, by the assumptions on η in Definition
8, all these level sets of f terminate at the conformal boundary precisely on ∂D .
Qualitatively speaking, each level set starts from the boundary at ∂D and travels
inward into the bulk as one goes into D .
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The primary observation behind the proof of Theorem 4.1 is that the level sets
of f which are sufficiently near the conformal boundary are pseudoconvex; this will
be further elaborated in the following subsection. We note here that the pseudo-
convexity of these level sets is a consequence of D being “sufficiently large" as
to satisfy the GNCC. Moreover, the level sets { f = f∗} asymptote precisely to the
boundary region D as f? ↘ 0. As a result, the pseudoconvexity of these level sets
degenerates toward the conformal boundary, which causes considerable complica-
tions.

There is one additional difference between the forms of (3) and (6)—the presence
of additional weights in (3), in the form of powers of ρ and f . The most dramatic
weight f ρ3, in the first-order terms on the right-hand side of (6), is present be-
cause of the degeneration of pseudoconvexity toward the conformal boundary. On
the other hand, the relatively mild weight f 2p in the zero-order terms come from σ

and its effects on the boundary asymptotics of waves.
Together, these weights determine the class of wave equations for which one can

obtain unique continuation results. In particular, observe that for the left-hand side
of (6) to absorb into the right-hand side, Φ must satisfy a Klein-Gordon equation in
which the lower-order terms have weights that at most match those in the right-hand
side of (6). More specifically, we can only prove unique continuation for Klein-
Gordon equations of the form

(�g +σ)Φ = O(ρ2+ε)(Dρ Φ,DΦ)+O(ρε)Φ, ε > 0. (7)

Thus, another challenge in the proof of Theorem 3.2 is to ensure that the relevant
wave equations arising from the EVE are indeed of the above form, so that Theorem
4.1 is applicable.

Remark 47. To obtain (7), we replaced f -weights in (6) by ρ-weights, since (4)
implies that ρ is bounded by f , and because ρ is a much more physically meaningful
quantity.

Remark 48. The arbitrarily small powers ρε in the right-hand side of (7) can be
removed, at the cost of requiring additional orders of vanishing for Φ; see [20, 36,
55] for details.

Remark 49. For the weight f n−2−2κ in (6), note f n counters the singular factor ρ−n

hidden in the volume form dg, while f−2κ−2 matches the ρ-weight applied to Φ in
the boundary term.

4.3 Pseudoconvexity

Finally, we close this section with a discussion of some of the main ideas in the
proof of Theorem 4.1. Here, we focus primarily on derivation of pseudoconvexity
for the level sets of f and its connection to the GNCC. For full details, the reader is
referred to [20, Section 5].
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According to Definition 9, we must show, in our aAdS setting, that (2) holds
whenever (1) holds. Note that this would immediately follow if we find a smooth
(scalar) function w such that

−(∇2 f +w ·g)(X ,X)> 0, (8)

for any vector field X (not necessarily null) that is tangent to the level sets of f . For
this, we look at the leading-order asymptotics of (8), in terms of properties on the
conformal boundary.

First, one can naturally relate tangent vectors on the conformal boundary I to
tangent vectors to level sets of f through the following isomorphism:

X ∈ TI ↔ X := ρ[ f (Xη)∂ρ +X] ∈ T{ f = f0}. (9)

(The weight ρ on the right-hand is to ensure that X and X have almost the same g-
and g-lengths, respectively.) Then, a direct computation—see [20, Lemma 2.18]—
yields that

(∇2 f + f ·g)(X ,X) = ρ f 2D2
η(X,X)+

1
2

ρ f Lρ g(X,X)+ρ f 3XηLρ g(D]
η ,X),

where D2 and D] denote the Hessian and gradient with respect to g. The right-hand
side can then be expanded using Definition 1; extracting the leading-order term at
the boundary yields

−(∇2 f + f ·g)(X ,X) = ρ f 2(D2
η−η ·g(2))(X,X)+O(ρ f 3)(X,X)

= ρ f 2(D2
η +η ·P[g])(X,X)+O(ρ f 3)(X,X),

where we applied the property (6) from the partial FG expansion the last step.
Choosing

w := f + f ρ
2
ζ , (10)

for some ζ ∈C∞(I ) to be determined, we then have

−(∇2 f +w ·g)(X ,X) = ρ f 2(D2
η +η ·P[g]−ζ ·g)(X,X)+O(ρ f 3)(X,X). (11)

The above can be directly linked to the GNCC through the following algebraic
property:

Proposition 5. The following property holds for any g-null Z,

(D2
η +η ·P[g])(Z,Z)& h(Z,Z),

if and only if there exists ζ ∈ C∞(I ) such that the following holds for any vector
field X on I :

(D2
η +η ·P[g]−ζ ·g)(X,X)& h(X,X).

Remark 50. See [55, Corollary 3.5] or [62, Lemma 4.3] for proofs of Proposition
5. Note the n = 2 case can be proved directly, but when n ≥ 3, the main (rather
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nontrivial) observation is that two bilinear forms that do not vanish simultaneously
can be simultaneously diagonalized [31].

Combining (11) with Proposition 5, we conclude that if the GNCC holds, then
(8) holds sufficiently near the conformal boundary, and the near-boundary level sets
of f are pseudoconvex.

Remark 51. In fact, the above computations give a slightly stronger bound:

−(∇2 f +w ·g)(X ,X)& ρ f 2 ·h(X,X).

The specific weights on the right-hand side eventually lead to corresponding weights
in (6).

As for the Carleman estimate (6), the process is similar to other proofs of Carle-
man estimates for wave equations. Conjugating the Klein-Gordon operator (�g+σ)
with the Carleman weight,

L := e−
λ f p

p f−κ(�̆g +σ)e
λ f p

p f κ ,

we can then roughly view the proof of (6) (modulo some additional weights) as a
positive commutator estimate for L . The challenge is to obtain positivity for the
H1-norm of Φ:

• For derivatives of Φ along the normal to the level sets of f , the positivity comes,
as usual, for free from the square of the odd part of L .

• For Φ itself, the positivity comes from the choice of Carleman weight—in fact,
from choosing the parameter κ to be sufficiently large compared to σ .

• For derivatives of Φ along the level sets of f , we look, as usual, to the commutator
between the odd and even parts of L . For this, the principal part is roughly given
by

− f n−3(∇2 f +w ·g)(∇̆Φ, ∇̆Φ),

which we can show is positive due to the GNCC and pseudoconvexity.

The proof of (6) is completed (after a substantial amount of computations) by using
the above observations, and by noting that all remaining quantities are “lower-order"
and can be absorbed.

Remark 52. The proof of (6) in [20] does not use a positive commutator argument,
but instead derives positivity directly through geometric computations via integra-
tions by parts. We adopted the language of positive commutators here, since it is
widely used in the Carleman estimate literature.

Finally, all the above is significantly complicated by the zero-pseudoconvexity,
which introduces various weights that vanish at the conformal boundary. In particu-
lar, considerable care is needed to ensure that terms which should be “lower-order"
can still be absorbed into the “principal" terms—that is, that the various weights are
compatible with each other. For details of these computations, the reader is referred
to the full proof of Theorem 4.1 in [20, Section 5].
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5 Proof of Theorem 3.2

In this section, we give an outline of the proof of our main result, Theorem 3.2,
and we highlight the main ideas behind the proof. The reader is referred to [37] for
further details.

5.1 Reduction to Unique Continuation

Let us now assume the hypotheses of Theorem 3.2. As a matter of convention, we
use the same notations for quantities defined from both g and ḡ, except that objects
associated with ḡ have a bar over their symbols.

The initial step is to reduce Theorem 3.2 to a setting in which can perform analy-
sis. By pulling Ī and M̄ := (0, ρ̄0]× Ī back through the gauge transformation φ ,
we are then in the setting in which Ī = I and M̄ = M —more specifically, M̄ is
pulled back to M via

(ρ, p) ∈M 7→ (ρ,φ(p)) ∈ M̄ .

Furthermore, (g(0),g(n)) and (ḡ(0), ḡ(n)) are now related on D by (12)–(13), for some
conformal factor a. Next, applying a change of FG boundary defining function ρ 7→
ρ̄ satisfying the boundary condition (11), we can then further reduce to the case in
which

I = Ī , M = M̄ , (g(0),g(n))|D = (ḡ(0), ḡ(n))|D . (1)

Now that g and ḡ—as well as all the quantities defined from them—lie on a com-
mon manifold, the proof will be complete if we can show that g = ḡ, or equivalently,
g− ḡ = 0. By the last part of (1), and by the properties of the partial FG expansion
in Theorem 2.1, we have that

g(k)− ḡ(k) = 0, g(?)− ḡ(?) = 0, 0≤ k ≤ n. (2)

Thus, thanks to (1), Theorem 3.2 will be proved if we show that (2) implies

g− ḡ = 0. (3)

5.2 The Wave-Transport System

The strategy for proving (3) will be to formulate g− ḡ as an unknown in a closed
system of (vertical) tensorial transport and wave equations, and to apply our Car-
leman estimates to this system to conclude that all its unknowns (including g− ḡ)
vanish.
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In this subsection, we derive a viable wave-transport system. For this, we also
define

mab := Lρ gab. (4)

In addition, we let W denote the Weyl curvature for g, and we decompose W into
vertical quantities:

w0
abcd := ρ

2 Wabcd , w1
abc := ρ

2 Wρabc, w2
ab := ρ

2 Wρaρb, (5)

The unknowns for our system will be constructed from g, (4), and (5).

Remark 53. We use lowercase Latin indices for vertical components, i.e., in direc-
tions along I .

From the Gauss-Codazzi equations on level sets of ρ and (2), one derives the
following:

Lρ mab =−2w2
ab +ρ

−1mab +
1
2

gcdmadmbc, Dbmac−Dambc = 2w1
cab. (6)

Of course, analogous formulas also hold with respect to quantities constructed from
ḡ. We wish to couple the equations (6) to wave equations satisfied by the Weyl
curvature W :

�gW +2nW =W ·W . (7)

(The right-hand side is quadratic in W ; see [37, Proposition 3.4] or [54, Proposi-
tion 4.5] for the exact formula or a derivation.) For this, we define one additional
renormalization for w0:

w?
abcd := w0

abcd−
1

n−2
(gadw2

bc +gbcw2
ad−gacw2

bd−gbdw2
ac). (8)

Then, one obtains, from (7), the following tensorial wave equations for w2, w1, and
w? (see either [37, Proposition 3.6] or [54, Proposition 4.15] for detailed deriva-
tions):

�̆gw2 +2(n−2)w2 = N2(g,m,Dm,w?,w1,w2,Dw?,Dw1,Dw2), (9)

�̆gw1 +(n−1)w2 = N1(g,m,Dm,w?,w1,w2,Dw?,Dw1,Dw2),

�̆gw? = N?(g,m,Dm,w?,w1,w2,Dw?,Dw1,Dw2).

Here, N2(·), N1(·), N?(·) represent nonlinear terms involving (contractions of) the
listed quantities that decay sufficiently quickly toward the conformal boundary.

Remark 54. The power ρ2 in (5) is crucial, as this is the only power of ρ for which
the resulting quantities will satisfy wave equations that are compatible with (6). The
renormalization (8) is made for the same reason, as the wave equation for w0 cannot
be used with (6).

Remark 55. That different Klein-Gordon masses appear in (9), at least when n > 3,
is due to w?, w1, and w2 having different asymptotic behaviors at the conformal
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boundary. (The case n = 3 is exceptional, since w1 and w2 have the same mass, and
w? is fully determined by w1 and w2.) As a result, we must treat the components w?,
w1, w2 separately in our analysis.

Subtracting (4), (6), and (9) from their counterparts for ḡ yields a closed wave-
transport system for the quantities g− ḡ, m− m̄, w?− w̄?, w1− w̄1, and w2− w̄2.
However, this system fails to close for the purpose of applying our Carleman esti-
mates. In particular, the wave Carleman estimate (6) will only allow us to control
up to one derivative of w?− w̄?, w1− w̄1, and w2− w̄2. This, in turn, only allows
to control—through (4) and (6)—one derivative of m− m̄ and g− ḡ. On the other
hand, when we take differences of the wave equations (9), we obtain terms involv-
ing the difference of �̆ and ¯̆�, which contains second derivatives of g− ḡ that we a
priori cannot treat.

The resolution, inspired by the symmetry extension result [43] of Ionescu and
Klainerman, is to apply a careful renormalization of the system that eliminates the
troublesome quantities.

The first crucial observation is that while D2(g− ḡ) is off limits, we can obtain
some control if one derivative is a curl. In particular, (4) and the second part of (6)
yield, schematically,

Lρ [Ddb(g− ḡ)ac−Dda(g− ḡ)bc]∼ Dd [(Dbmac−Dambc)− (D̄bm̄ac− D̄am̄bc)]

∼ Dd(w
1− w̄1)cab.

The above still does not quite suffice, and we need one more renormalization—
this is due to error terms on the right-hand side involving D(Ď−D), which again
contain the undesirable D2(g− ǧ). All this leads us to define the following auxiliary
quantities:

Bcab := Dc(g− ḡ)ab−Da(g− ḡ)cb−DbQca, (10)

Lρ Qca := gdemce(g− ḡ)ad−gdemae(g− ḡ)cd ,

with Q→ 0 as ρ → 0. One then shows DB can indeed be adequately controlled by
D(w1− w̄1).

The second crucial observation comes from a detailed examination of the differ-
ence �̆− ¯̆�. To appreciate this, let us consider the wave equation for w2− w̄2:

�̆(w2− w̄2) = �̆w2− ¯̆�w̄2− (�̆− ¯̆�)w̄2. (11)

The dangerous terms arise from the following (rather long) computation,

(�̆− ¯̆�)w̄2
ab =−

1
2

ρ
2gcdge f w̄2

ebDcBa f d−
1
2

ge f w̄2
eb�̆(g− ḡ+Q)a f (12)

− 1
2

ρ
2gcdge f w̄2

eaDcBb f d−
1
2

ge f w̄2
ea�̆(g− ḡ+Q)b f +Errab,
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where Err consists of (many) terms containing only difference quantities that we
can control.

The key point is that the only instances of D2(g− ǧ) appear either as DB, which
we can control, or as �̆ applied to difference quantities. This leads us to the renor-
malized curvature difference

W2
ab := w2

ab− w̄2
ab +

1
2

gdew̄2
ad(g− ḡ+Q)be +

1
2

gdew̄2
db(g− ḡ+Q)ae, (13)

which in essence shifts the �̆-terms from the right-hand side of (12) into the left;
one can also define the remaining W1 and W? similarly. In light of (11) and (12),
we obtain that W?, W1, W2 satisfy wave equations that do not contain D2(g− ǧ) as
sources.

Finally, the renormalized wave-transport system is obtained by treating the quan-
tities

g− ḡ, Q, m− m̄, B, W?, W1, W2 (14)

as unknowns. In particular, from the above discussions, and from various asymptotic
properties of geometric quantities, we arrive at the (schematic) transport equations

Lρ(g− ḡ) = m− m̄, (15)
Lρ Q = O(ρ)(g− ḡ,Q),

Lρ B = 2(w1− w̄1)+O(ρ)(g− ḡ,Q,B)+O(1)(m− m̄),

Lρ [ρ
−1(m− m̄)] =−2ρ

−1W2 +O(1)(g− ḡ,m− m̄,Q),

coupled to the following (schematic) wave equations:

�̆W2 +2(n−2)W2

�̆W1 +(n−1)W1

�̆W?

= ∑
V∈{W?,W1,W2}

[
O(ρ2)V+O(ρ3)DV

]
+O(ρ)(m− m̄)

(16)

+O(ρ2)(g− ḡ,Q,D(g− ḡ),DQ,D(m− m̄),DB).

The O(·)’s in (15)–(16) indicate the asymptotics of various coefficients as ρ → 0.
For more precise formulas and derivations, see [37, Proposition 3.13, Proposi-

tion 3.14]. In particular, the wave-transport system (15)–(16) indeed closes from the
point of view of derivatives.

Remark 56. The system (15)–(16) could also be used to derive unique continuation
results for the EVE near finite timelike hypersurfaces, providing an alternative ap-
proach to that of [1].

Remark 57. Note that [16, 21], the Riemannian and stationary analogues of The-
orem 3.2, avoid the issues that make the extended system (15)–(16) necessary. In
particular, the main equations in [16, 21] are elliptic rather than hyperbolic, and the
Carleman estimates in this setting control one extra derivative. Thus, the analogue
of D2(g− ḡ) does not cause any issues there.



Correspondence and Unique Continuation 35

Furthermore, [16, 21] avoid the curvature entirely. Instead, they can work with a
much simpler system that is based on second-order elliptic equations for m− m̄.

Finally, since all hypersurfaces are pseudoconvex in elliptic settings, [16, 21]
avoid all the major difficulties of zero-pseudoconvexity and of constructing pseudo-
convex hypersurfaces.

Remark 58. As previously mentioned, our system (15)–(16) is heavily inspired by
[43], which devised an analogous wave-transport system for proving a Killing field
extension result across finite hypersurfaces. In particular, [43] used as unknowns the
analogues of LKg, ∇LKg, LKW , along with a number of renormalizations, where
K is the Killing vector field to be extended.

In fact, a modification of the wave-transport system in [43] (that also decom-
poses the unknowns into vertical tensor fields) can be used to give a direct proof
of Theorem 3.4, without appealing to Theorem 3.2 or Theorem 3.3. This modified
wave-transport system would have the same qualities as (15)–(16), one we can sim-
ilarly apply our Carleman estimates to this system.

Furthermore, one can draw a direct parallel between the system in [43] and our
wave-transport system (15)–(16). More specifically, one can map the unknowns in
[43] to the unknowns here by replacing every LK applied to a quantity in [43]
by the corresponding difference of that quantity for two metrics here. (To be fully
precise, one must also decompose spacetime quantities into vertical tensor fields.)
Furthermore, the renormalizations in [43] can be related to our renormalizations in
this same manner. For details, see the discussions in [37, Section 1.5].

5.3 Unique Continuation

With the wave-transport system (15)–(16) in place, we now apply our Carleman
estimates to this system to derive unique continuation—in particular (3).

The first step is to show that the unknowns of (15)–(16) vanish to high enough
order at the conformal boundary. For this, we begin by expressing them in terms of
our partial FG expansion (4). Using that the expansions for g and ḡ match up to n-th
order by (2), we derive

g− ḡ = o(ρn), m− m̄,w1− w̄1 = o(ρn−1), w2− w̄2,w0− w̄0 = o(ρn−2).
(17)

From here, the key observation is the following system (see [37, Proposition
3.15] for details):

Lρ(g− ḡ) = m− m̄, (18)

Lρ [ρ
−1(m− m̄)] =−2ρ

−1(w2− w̄2)+O(ρ)(g− ḡ)+O(1)(m− m̄),

Lρ [ρ
2−n(w2− w̄2)] = O(ρ2−n)(D(w1− w̄1),m− m̄)

+O(ρ3−n)(g− ḡ,D(g− ḡ),w0− w̄0,w2− w̄2),
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Lρ [ρ
−1(w1− w̄1)] = O(ρ−1)(D(w2− w̄2),m− m̄)

+O(1)(g− ḡ,D(g− ḡ),w− w̄1),

Lρ(w
0− w̄0) = O(ρ−1)(w2− w̄2)+O(1)(D(w1− w̄1),g− ḡ,m− m̄)

+O(ρ)(D(g− ḡ),w0− w̄0).

Note that the first two parts of (18) are just (4) and (15) (without renormalizations),
while the last three parts of (18) are consequences of the Bianchi equations for W .
Integrating (18) from ρ = 0, one can improve the vanishing in (17) by two powers
of ρ:

g− ḡ = o(ρn+2), m− m̄,w1− w̄1 = o(ρn+1), w2− w̄2,w0− w̄0 = o(ρn).
(19)

Remark 59. The initial vanishing (17) from the partial FG expansions is crucial here.
Due to the ρ2−n in the third part of (18), we cannot use (18) to improve our vanishing
without (17).

Remark 60. The equations (18) have a hierarchical structure, in that we have to ap-
ply them in a specific order to correctly derive (19). In particular, in [37], the quan-
tities are estimated in the following order: w2− w̄2, w0− w̄0, m−m̄, g− ḡ, w1− w̄1.

The vanishing rates can be further improved by repeating the above argument, so
that each iteration improves all vanishing rates by ρ2. From this, we conclude that
all the unknowns (14) vanish to arbitrarily high order at the conformal boundary.
As a result, there will be no boundary terms present when we apply the Carleman
estimates.

Remark 61. More accurately, we can obtain as much vanishing for (14) as we have
regularity in the vertical directions for g. As a result, we must also assume sufficient
regularity in Theorem 3.2 in order to achieve the vanishing rates needed for (14)
so that the Carleman estimates can be applied. However, this is mainly a technical
issue, and we avoid dealing with this here.

From here, the process is mostly standard. We fix constants

0 < fi < fe < f?, κ � 1, (20)

with f? sufficiently small and κ large enough, and we fix a smooth cutoff function

χ := χ̂( f ), χ̂(s) =

{
1 s < fi,
0 s > fe.

(21)

Applying the wave Carleman estimate (6) on Ω f? to χW?, χW1, and χW2, sum-
ming the results, and recalling the wave equations (16), we obtain that

λ

∫
Ωi

wλ ( f ) ∑
V∈{W?,W1,W2}

(ρ2p|V|2 +ρ
4|DV|2)dg (22)
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.
∫

Ωi

wλ ( f ) ∑
U∈{g−ḡ,Q,m−m̄,B}

(ρ2−p|U|2 +ρ
4−p|DU|2)dg

+
∫

Ωi

wλ ( f ) ∑
V∈{W?,W1,W2}

(ρ4−p|V|2 +ρ
6−p|DV|2)dg+

∫
Ωe

wλ ( f )(. . .)dg,

where

wλ ( f ) := e−2λ p−1 f p
f n−2−2κ , Ωi := {0 < fi}, Ωe := { fi ≤ f < fe}. (23)

(The “. . ." in the Ωe-integral depends on the unknowns (14), various weights in ρ

and f , and the cutoff χ . Its precise contents are irrelevant, as we only require that
this integral is finite.)

For the quantities satisfying transport equations, we must apply a separate trans-
port Carleman estimate (see [37, Proposition 4.6] for the precise statement and
proof):

Proposition 6 (Carleman estimate for transport equations [37]). Assume the
same setup as Theorem 4.1, and fix s ≥ 0. Then, the following holds for any ver-
tical tensor field Ψ on M ; large enough κ , λ (depending on n and s); small enough
f? (depending on g and D); and 0 < p < 1

2 :∫
Ω f?

e−λ p−1 f p
f n−2−p−2κ

ρ
s+2|Lρ Ψ|2 dg+λ limsup

ρ?↘0

∫
Ω f?∩{ρ=ρ∗}

ρ
s|ρ−κ−1Ψ|2 dg

(24)

& λ

∫
Ω f?

e−λ p−1 f p
f n−2−2κ

ρ
s|Ψ|2 dg.

Remark 62. While the wave Carleman estimate, Theorem 4.1, was quite involved
and required several new ideas to treat, the transport Carleman estimate is straight-
forward to prove.

We now apply Proposition 6 to g− ḡ, Q, m−m̄, B, and their first derivatives (with
the same κ and f? as before, and with appropriate s). Recalling (15) and summing
the results yields

λ

∫
Ωi

wλ ( f ) ∑
U∈{g−ḡ,Q,m−m̄,B}

(|U|2 +ρ
3|DU|2)dg (25)

.
∫

Ωi

wλ ( f ) ∑
U∈{g−ḡ,Q,m−m̄,B}

(ρ2−p|U|2 +ρ
5−p|DU|2)dg

+
∫

Ωi

wλ ( f ) ∑
V∈{W?,W1,W2}

(ρ2−p|V|2 +ρ
5−p|DV|2)dg.

The key point here is that the ρ-weights on the right-hand sides of (22) and
(25) come from the O(·)-coefficients in (15)–(16). The final crucial feature of our
system is these ρ-weights are strong enough that, after summing (22) and (25), the
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Ωi-integrals on the right-hand side can be absorbed into the left-hand side (once λ

is sufficiently large). From the above, we conclude that

λ

∫
Ωi

wλ ( f ) ∑
V∈{W?,W1,W2}

ρ
2p|V|2 dg+λ

∫
Ωi

wλ ( f ) ∑
U∈{g−ḡ,Q,m−m̄,B}

|U|2 dg

.
∫

Ωe

wλ ( f )(. . .)dg.

Finally, wλ ( f ) in the above can be removed in the standard fashion by noting that
wλ ( f )≤ wλ ( fi) on Ωe and wλ ( f )≥ wλ ( fi) on Ωi; this yields the estimate

λ

∫
Ωi

∑
V∈{W?,W1,W2}

ρ
2p|V|2 dg+λ

∫
Ωi

∑
U∈{g−ḡ,Q,m−m̄,B}

|U|2 dg

.
∫

Ωe

(. . .)dg.

Letting λ ↗ ∞ in the above, we conclude that (3) holds on Ωi.

Remark 63. By setting fi to be arbitrarily close to f?, we hence show that (3) holds
on Ω f? .

6 Related Problems

We conclude this article by briefly discussing some other research directions related
to Theorem 3.2. Much of this discussion can also be found in [37, Section 1.6].

6.1 Low Dimensions

Recall that Theorems 3.2, 3.3, and 3.4 all assume that the conformal boundary di-
mension n is strictly greater than 2. This raises the question of whether analogues
of these theorems hold in the low-dimensional case n = 2.

In fact, the problem simplifies considerably when n= 2 due to the rigidity of low-
dimensional settings. Since the spacetime Weyl curvature W now vanishes identi-
cally, it follows that any vacuum aAdS spacetime when n = 2 must be locally iso-
metric to the AdS spacetime. Furthermore, as all curvature terms disappear from
the system (6), one can prove unique continuation using only transport equations
(and avoiding wave equations). This yields analogues of all our main theorems for
n = 2—but from any domain D , without requiring the GNCC.
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6.2 Extensions of the GNCC

An often studied setting in the physics literature is the case when the boundary
region D ⊂I in Theorem 3.2 is a causal diamond, that is, of the form

D := I +(p)∩I −(q), p,q ∈I . (1)

(I + and I − denote the chronological future and past, respectively, in (I ,g).)
Unfortunately, causal diamonds (1), regardless of how large they are, generically
fail to satisfy the GNCC when n > 2; see the argument in [20, Section 3.3]. As a
result, Theorem 3.2 fails to apply when D is as in (1)—in other words, our result
cannot establish that vacuum aAdS spacetimes are uniquely determined by their
holographic data on any non-pathological causal diamond.

This leads to the question of whether the GNCC can be further refined, so that
Theorem 3.2 can be extended to apply to D as in (1) in some capacity. One ob-
servation here is that the failure of the GNCC is due only to the presence of cor-
ners in ∂D , where the boundaries of I +(p) and I −(q) intersect. Near these cor-
ners, one can find near-boundary null geodesics “hovering over" but avoiding D .
This leads to the following question: could holographic data on D uniquely deter-
mine the vacuum aAdS spacetime near some proper subset D ′ ⊂ D—in particular
when D is sufficiently large, and when D ′ is sufficiently far from any corners in
∂I +(p)∩∂I −(q)?

At the same time, one may ask whether this refined GNCC can also be formu-
lated for more general domains D ⊂ I . More specifically, one can formulate the
following:

Problem 5. Consider the setting of Theorem 3.2. Show that if D ′ ⊆ D satisfies
some (yet to be formulated) “refined GNCC" relative to D , then (M ,g) is uniquely
determined (up to isometry) near D ′ by the holographic data on D (up to gauge
equivalence).

Keeping with our intuitions, an optimal formulation of such an extended GNCC
would be one that directly characterizes null geodesic trajectories near the confor-
mal boundary. Such a criterion would fully confirm the belief that the only im-
pediment to unique continuation for waves from the conformal boundary is the
near-boundary geometric optics solutions of Alinhac and Baouendi [10]. However,
a proof of such a statement may require novel ideas from microlocal analysis.

6.3 Global Correspondences

Recall that our main result, Theorem 3.2, is “local" in nature, in the sense that the
vacuum spacetime is only uniquely determined near a given conformal boundary re-
gion D . This is due to our general setup, which does not provide any information on
the global spacetime geometry. However, this leaves open the question of whether
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a more global unique continuation result can be established if more additional as-
sumptions are imposed.

For example, one can consider aAdS spacetimes (M ,g) that are global perturba-
tions, in some sense, of a Kerr-AdS spacetime. One can then ask whether any given
holographic data (I ,g(0),g(n)) determines the spacetime in the full domain of outer
communications, or if additional conditions are needed to rule out bifurcating coun-
terexamples. Also, if uniqueness holds, then another question of interest is whether
one has a one-to-one correspondence between holographic data on the boundary
and some (appropriately conceived) holographic data on the black hole horizon.

In [35, Section 6], the Carleman estimates of that paper were used to show that
the linearized EVE on AdS spacetime (formulated as Bianchi equations for spin-2
fields) are globally characterized by their holographic boundary data over a suffi-
ciently long timespan. Upcoming work by McGill and the second author will extend
this to the nonlinear setting—roughly, under additional global topological assump-
tions, AdS spacetime is globally uniquely determined, as a solution to the EVE, by
its holographic data. An interesting next step would be to explore whether these
analyses can be extended to black hole aAdS spacetimes, such as Schwarzschild-
AdS and Kerr-AdS.

6.4 Nonlinear Counterexamples

As mentioned before, all the intuitions for the GNCC being the crucial criterion for
Theorem 3.2 are based on the observation that violations of the GNCC lead to coun-
terexamples to unique continuation for wave equations. Certainly, it would be more
preferable to construct counterexamples to unique continuation for the nonlinear
EVE itself when the GNCC fails to hold. However, this problem is wide open and is
expected to be very difficult.

6.5 Nature of the Correspondence

While Theorem 3.2 establishes that there exists a one-to-one correspondence be-
tween vacuum aAdS spacetimes (near the conformal boundary) and some space of
holographic data, it says little about the nature of the correspondence, leaving open
the question of how the gravitational dynamics and the conformal field theories are
connected.

One can pose a number of interesting problems here that are both wide open
and challenging. For instance, one such problem would be to determine which holo-
graphic data (I ,g(0),g(n)) can be realized as the conformal boundary data for a
vacuum aAdS spacetime. Moreover, given holographic data that is associated to a
vacuum aAdS spacetime, another challenge would be to reconstruct or approximate
the aAdS spacetime that induces the holographic data.
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