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Abstract We review work on ‘decomposition,’ a property of two-dimensional the-
ories with 1-form symmetries and, more generally, d-dimensional theories with
(d−1)-form symmetries. Decomposition is the observation that such quantum field
theories are equivalent to (‘decompose into’) disjoint unions of other QFTs, known
in this context as “universes.” Examples include two-dimensional gauge theories and
orbifolds with matter invariant under a subgroup of the gauge group. Decomposition
explains and relates several physical properties of these theories – for example, re-
strictions on allowed instantons arise as a “multiverse interference effect” between
contributions from constituent universes. First worked out in 2006 as part of efforts
to resolve technical questions in string propagation on stacks, decomposition has
been the driver of a number of developments since. We give a general overview of
decomposition, describe features of decomposition arising in gauge theories, then
dive into specifics for orbifolds. We conclude with a discussion of the recent ap-
plication to anomaly resolution of Wang-Wen-Witten in two-dimensional orbifolds.
This is a contribution to the proceedings of the conference Two-dimensional super-
symmetric theories and related topics (Matrix Institute, Australia, January 2022),
giving an overview of a talk given there and elsewhere.

1 Introduction

Briefly, decomposition is the observation that some QFTs with a local action are
secretly equivalent to sums (disjoint unions) of other QFTs, known in this context
as ‘universes.’

When this happens, we say that the QFT decomposes (into its constitutent uni-
veres). Decomposition of the QFT can be applied to give insight into its properties.
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Decomposition was first described in 2006 in [26], where it arose as part of ef-
forts to understand string compactifications on generalizations of spaces known as
stacks and gerbes, and resolved some of the apparent physical inconsistencies of
those theories. It has since been developed in numerous other papers, see for ex-
ample [4–8, 13, 14, 16–18, 20, 27, 29, 32, 33, 38, 39, 43–46, 51, 53, 54, 57–59, 66] and
discussed in review articles including [48–50, 52].

For one QFT to be a sum (or disjoint union1) of other QFTs means that, for exam-
ple, there exist projection operators: a set of topological operators Πi that commute
with all operators in the theory

[Πi,O] = 0, (1)

and with the properties that

ΠiΠ j = δi jΠ j, ∑
i

Πi = 1. (2)

From (1), the projectors are mutually commuting, so they can be simultaneously
diagonalized: the Fock space can be diagonalized into eigenmodes of the projectors
Πi, which are the states of the constituent universes. From (2), one can show that
correlation functions are a sum of correlation functions in the constituent theories.
Using the properties above, we can write

〈O1 · · ·Om〉 = ∑
i
〈ΠiO1 · · ·Om〉, (3)

= ∑
i
〈(ΠiO1) · · ·(ΠiOm)〉, (4)

= ∑
i
〈Õ1 · · ·Õm〉i, (5)

where the Õ are the projections of the operators O into the universes.
In practice, beyond exhibiting projection operators, another property will be used

frequently in this article in describing and checking decompositions, namely that (on
a connected spacetime) the partition function of a disjoint union is the sum of the
partition functions of the constituent universes:

Z = ∑
i

Zi. (6)

In essence, this is because the state space of the disjoint union is a sum of the state
spaces of the constituent theories. Formally, if we write

Z = ∑
states

exp(−βH), (7)

then using the fact that the whole state (Fock) space is a sum over state spaces of
the constituent universes, we have immediately that

1 We will use the terms ‘sum’ and ‘disjoint union’ interchangeably in this article.
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Z = ∑
i

∑
states in i

exp(−βH) = ∑
i

Zi. (8)

Let us take a moment to distinguish universes from superselection sectors
arising in spontaneous symmetry breaking. Briefly, the idea of a superselec-
tion sector is that it is a sector of the theory characterized by a vacuum that
cannot be shifted perturbatively by local operators, but can be changed by
adding energy (broadly proportional to volume). A prototypical example of
superselection sectors is the orientation of magnetization (microscopically,
spins) in a bar magnet. In that example, local operators cannot change the
direction of magnetization; however, by adding energy (broadly proportional
to the volume), one can randomize the spins, then as the magnet cools, the
spins may align in a new direction. Here, however, it should be noted that the
different superselection sectors (magnetizations) are linked to one another –
except in deep IR or infinite volume limits, there is a continuous path in field
space connecting them. By contrast, in decomposition, one has disjoint QFTs
at every energy scale, meaning that there is no continuous path linking states
in different universes. A more detailed discussion can be found in [58].

To be clear, disjoint unions can also emerge as deep IR / infinite volume lim-
its in spontaneous symmetry breaking, and also from limits of KK reductions as
in [3]. However, once one has a disjoint union of QFTs, to ‘rejoin’ the theories at
higher energies, one must deform by a (typically non-local) operator that bridges
the disjoint union. (At the fixed point, if such an operator were local, it would be
an irrelevant operator.) The coupling of that operator vanishes in the IR limit, but at
higher energies, could result in a single theory. However, without such a deforma-
tion, a disjoint union remains disjoint at all energy scales. In any event, we usually
reserve the term ‘decomposition’ for the special case of a disjoint union of quantum
field theories described by a local action.

Later we will work through examples of decomposition in detail, but for the
moment, let us outline some known examples.

• Orbifolds. Broadly speaking, orbifolds in which a subgroup of the gauge group
acts trivially decompose, see e.g. [26, 43–46]. There is a longer story behind
why orbifolds with trivially-acting subgroups differ from ordinary orbifolds, see
[40–42] for early work, but in any event, much of this review will be devoted to
orbifolds, so we will see detailed examples shortly.

• Two-dimensional gauge theories in which a subgroup of the gauge group acts
trivially also decompose. Such gauge theories, and their differences from ordi-
nary gauge theories, were discussed in [40–42]. Examples of their decomposition
include the following:

– A two-dimensional U(1) gauge theory with nonminimal charges is equivalent
to a sum of U(1) theories with minimal charges [26],
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– A two-dimensional G gauge theory with center-invariant matter is equivalent
to a union of G/Z(G) gauge theories (for Z(G) the center of G) with discrete
theta angles [51],

– Two-dimensional pure Yang-Mills theory for gauge group G is equivalent to
a sum of invertible field theories, indexed by irreducible representations of
G [38, 39] (see also [13] for the abelian case).

• Four-dimensional Yang-Mills theory with a restriction to instantons of degree di-
visible by k > 1 is equivalent to a disjoint union of k ordinary four-dimensional
Yang-Mills theories with different theta angles [58]. (This also, correctly, sug-
gests a subtlety involving cluster decomposition, to which we shall return shortly.)

• Unitary two-dimensional topological field theories (with semisimple local op-
erator algebras). It has been known for many years that these are equivalent to
disjoint unions of invertible field theories, see e.g. [15, 37], and by utilizing non-
invertible higher-form symmetries, it was argued in [32, 33] that these are also
examples of decomposition.

• Finally, sigma models on gerbes. Gerbes are examples of stacks, generalizations
of spaces which admit metrics, spinors, gauge fields, and everything else one
would require to make sense of a sigma model. Sigma models with target stacks
were studied in [40–42], in the hope of discovering new string compactifications,
new (2,2) SCFTs, and amongst the technical challenges that arose (construction
of an action, presentation dependence, naively inconsistent moduli) was, in the
case of gerbes, a violation of cluster decomposition. The original motivation for
decomposition [26] was to resolve this problem. The resolution observed that
a sigma model on a gerbe is equivalent to a disjoint union of sigma models on
spaces, solving the issue with cluster decomposition, but also clarifying that one
could not construct new (2,2) SCFTs in this fashion.

So far we have outlined a number of rather diverse-looking examples of decom-
position, in both two and four dimensions. The reader may well ask, what do these
examples have in common?

Briefly, in d spacetime dimensions, a theory decomposes when it has a (d−1)-
form symmetry. (In two dimensions, this was the point of [26], and it was gen-
eralized to higher dimensions in [13, 58].) Thus, decomposition and higher-form
symmetries go hand-in-hand.

In this review, we will primarily focus on the case d = 2, for which one will have
a decomposition if a (d−1) = 1-form symmetry is present.

To that end, let us take a moment to briefly review one-form symmetries. For
this review, intuitively, a one-form symmetry group is (something like) a group that
exchanges nonperturbative sectors.

For example, consider a G gauge theory or orbifold in which the matter/fields are
invariant under a subgroup K ⊂ G. For simplicity, let us assume that K is abelian,
and in fact lies within the center of G. Then, in this case, there is a permutation
symmetry amongst the nonperturbative sectors. Schematically, the path integral is
invariant under

(G-bundle) 7→ (G-bundle)⊗ (K-bundle) , (9)
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or if the reader prefers, in terms of gauge fields,

A 7→ A+A′, (10)

where A is a G-instanton and A′ is a K-instanton.
Instead of an action of elements of groups, we have an action of bundles of

groups. This structure is almost a group, except that associativity of multiplication
only holds up to multiplication. Technically, this is known as a 2-group.

The 2-group whose elements are K-bundles, is denoted either K(1) (recently in
physics) or BK (in math). The latter notation has been used for decades, so we will
use the notation BK to denote a 2-group of K bundles.

One-form symmetries can also been seen in the algebra of topological local op-
erators, where they are often realized nonlinearly. This is how the decomposition
story connects to two-dimensional topological field theories [32, 33], but is beyond
the scope of this article.

There are several descriptions of the two-dimensional quantum field theories
which we will discuss in this article:

• A gauge theory or orbifold with a trivially-acting subgroup (i.e. a non-complete
charge spectrum),

• A theory with a restriction on instantons,
• Sigma models on gerbes,
• A theory with multiple topological local operators.

Decomposition often relates these different pictures.

• For one example, we will see that restrictions on instantons are implemented as
a “multiverse interference effect” between the different universes of a decompo-
sition.

• The one-form symmetry of the quantum field theory can be understood in the
sigma model language. A ‘gerbe’ is a fiber bundle whose fibers are 2-groups BK
of one-form symmetries. In any case in which the target space of a sigma model
is a fiber bundle, the sigma model possesses a global symmetry corresponding to
translations along the fibers. For a sigma model whose target is a gerbe, since the
fibers are copies of BK, the sigma model has a BK symmetry.

• This is described by gauge theories with trivially-acting subgroups because BK =
[point/K]. (In ordinary geometry, a quotient of a point by any group is the same
point back again, but the pertinent mathematics keeps track of automorphisms,
and so this is different from a point.) Utlimately, a sigma model whose target is a
gerbe involves fibering a trivially-acting K gauge theory over an ordinary theory,
hence gauge theories with trivially-acting subgroups.
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2 Generalities on gauge theories

Suppose we have a two-dimensional G gauge theory, where G is semisimple, and a
subgroup K of the center of G acts trivially on all the matter.

As outlined above, this theory has a global BK one-form symmetry, and so one
expects that it should decompose.

The projection operators are, schematically, twist fields / Gukov-Witten opera-
tors [23,24] corresponding to elements of the center of the group algebra C[K]. Ex-
istence of projectors (idempotents), forming a basis for the center, is a consequence
of Wedderburn’s theorem (see e.g. [35, section XVII.3]).

In particular, judging from the projectors of Wedderburn’s theorem, universes are
in one-to-one correspondence with irreducible representations of K.

Now, abstractly, that is a formal argument for a decomposition, but it does not
specify the form of the decomposition. In this particular case, decomposition takes
the form (see e.g. [51, section 2])

QFT(G−gauge theory) =
∏

θ∈K̂

QFT(G/K−gauge theory with discrete theta angle θ) .

(11)
For example, SU(2) gauge theory with center invariant matter is the disjoint

union of a pair of SO(3) theories, schematically

SU(2) = SO(3)+ + SO(3)−, (12)

where the ± denotes the (Z2-valued) discrete theta angle coupling to the second
Stiefel-Whitney class w2 ∈ H2(Z2).

Perturbatively, the SU(2) and SO(3)± theories are identical, but nonperturba-
tively, they differ. Specifically, there are more SO(3) instantons (bundles) than
SU(2) instantons (bundles). The effect of the discrete theta angle is to weight the
non-SU(2) SO(3) instantons by a sign, so that when the partition functions for the
SO(3)± theories are added, contributions from non-SU(2) SO(3) instantons can-
cel out between the two theories, leaving only SU(2) instantons – consistent with
decomposition.

We can describe this more formally as follows. Write the partition function of
the disjoint union as

Z = ∑
θ∈K̂

∫
[DA]exp(−S)exp

(
θ

∫
w2(A)

)
, (13)

where we use w2 ∈ H2(K) to denote the degree-two characteristic class of G/K
bundles. Now, moving the summation inside the path integral, we have

Z =
∫
[DA]exp(−S)

(
∑

θ∈K̂

exp
(

θ

∫
w2(A)

))
. (14)



An introduction to decomposition 7

However,

∑
θ∈K̂

exp
(

θ

∫
w2(A)

)
(15)

is proportional2 to a projection operator, projecting out instantons (bundles) for
which w2 6= 0, leaving only those bundles which exist in the G gauge theory.

In effect, an interference effect between the universes of decomposition – a “mul-
tiverse interference effect” – has cancelled out some of the nonperturbative sectors.

As a quick consistency check, let us compare to pure SU(2) Yang-Mills theory in
two dimensions, for which in essence everything is computable [36,47,64]. We will
check a decomposition due to the BZ2 center symmetry [51, section 2.4]; a more
extreme decomposition (to invertible field theories, utilizing noninvertible higher-
form symmetries) was discussed in [38, 39].

Consider partition functions in pure Yang-Mills theory in two dimensions. From
[36, 47, 64], the partition functions of the pure SU(2) and the pure SO(3) theory
without a discrete theta angle (denoted SO(3)+), the partition functions are of the
form

Z (G) = ∑
R
(dimR)2−2g exp(−AC2(R)) , (16)

where G is the gauge group (SU(2) or SO(3) here), g is the genus of the two-
dimensional spacetime, A its area, C2(R) the second Casimir, and the sum is over all
irreducible representations of G. We also need the partition function of the SO(3)−
theory; this was computed in [55], and takes the same form as above, namely

Z (SO(3)−) = ∑
R
(dimR)2−2g exp(−AC2(R)) , (17)

where the sum is now over representations of SU(2) that are not representations of
SO(3), a complementary sum to that appearing in the SO(3)+ partition function.
Assembling these pieces, we see immediately that adding a sum over SO(3) rep-
resentations to a sum over SU(2) representations minus SO(3) representations, we
get

Z (SU(2)) = Z (SO(3)+) + Z (SO(3)−) , (18)

We have discussed a number of theories with properties such as a restriction
on instantons, and multiple identity operators, properties which are often taken
to signal a violation of cluster decomposition (see e.g. [63, section 23.6]).
Especially as cluster decomposition is sometimes used interchangeably with
locality, this is often taken to indicate a sickness or inconsistency of the theory.

2 The proportionality factor reflects that fact that the G gauge theory has more gauge transforma-
tions than the G/K gauge theory, so the path integrals have, in principle, slightly different normal-
ization factors.
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However, that is an oversimplification. For example, cluster decomposition
can also be violated in spontaneous symmetry breaking, in infinite-volume
limits. This does not imply an inconsistency of the theory, but rather is just
a statement about the vacuum. Perhaps cluster decomposition is best thought
of as a property of vacua, and locality a property of the theory, and as these
examples illustrate, these are distinct notions, not interchangeable with one
another.

In any event, the theories we are describing are manifestly local, in that they
have local Lagrangians, and the separate universes are perfectly consistent.

3 Consistency tests and applications

Since 2005, decomposition has been checked in a wide variety of examples, in a
wide variety of different kinds of examples, and in many ways. We list a few exam-
ples below:

• Gauged linear sigma models (GLSMs): Decomposition has been checked in
gauged linear sigma models via mirror symmetry and in quantum cohomology
rings (the latter through Coulomb branch computations). For abelian GLSMs,
this was described in [40, 41] using Hori-Vafa mirrors [31]; for nonabelian
GLSMs, this was checked in the papers describing nonabelian mirror construc-
tions [11, 19, 21, 22].

• In orbifolds, decomposition has been checked extensively [26, 43–46] in, for ex-
ample, partition functions and massless spectra, as we will outline later in this
article.

• Decomposition has also been checked in open strings and K theory [26]. Briefly,
in a gauge theory in which a subgroup K of the gauge group acts trivially on bulk
degrees of freedom, K can still act nontrivially on boundary degrees of freedom,
which therefore organize according to irreducible representations of K, precisely
matching the description of universes earlier. In this picture, from gauge invari-
ance, open string states can only exist on open strings connecting the same irre-
ducible representations of K – meaning, that there are no open strings connecting
different universes. This also can be understood in terms of K theory [65]. As dis-
cussed in [26], K theory on gerbes is equivalent to (twisted) K theory on a disjoint
union of spaces, following the same pattern as decomposition.

• In supersymmetric gauge theories in two dimensions, supersymmetric localiza-
tion can be applied to give further tests of decomposition, as discussed in [51].

• In nonsupersymmetric pure Yang-Mills in two dimensions, decomposition can
also be checked. We have previously outlined tests of decomposition along cen-
ter one-form symmetries, which are described in greater detail in [51]. In ad-
dition, there exists a more extreme decomposition of nonsupersymmetric pure
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Yang-Mills to a disjoint union of invertible field theories, indexed by irreducible
representations of the gauge group [38, 39].

• Decomposition in adjoint QCD2 was studied in [33].
• Decomposition has been checked numerically in lattice gauge theory [29].
• Finally, lest we give a different impression, decomposition is not restricted to

two-dimensional theories, but has also been studied in other dimensions, see
e.g. [13, 14, 58].

We should also mention that decomposition has a number of applications:

• The original application was to understand and resolve certain technical issues
in making sense of sigma models whose targets are generalized spaces known
as ‘stacks’ [40–42]. This was part of a program of trying to construct new string
compactifications, new conformal field theories. After one understands basic is-
sues such as the construction of an action to describe such a sigma model, poten-
tial presentation-dependence issues, and moduli mismatches, more subtle issues
remain. For example, in the special cases of stacks known as ‘gerbes’ (fiber bun-
dles whose fibers are one-form symmetry groups), the sigma models violated
cluster decomposition. Understanding this issue was the original motivation for
work on decomposition, and the resolution was that such sigma models are equiv-
alent to disjoint unions of sigma models on ordinary spaces. As a result, we were
not able to construct new (2,2) supersymmetric SCFTs, though we did learn about
decomposition. (In the more general case of (0,2) SCFTs for gerbes, it is still an
open question of whether new string compactifications exist, see e.g. [4].)

• Decomposition makes predictions for Gromov-Witten theory, specifically the
Gromov-Witten theory of stacks and gerbes [1, 9, 10]. From decomposition, the
Gromov-Witten theory of a gerbe must match that of a disjoint union of spaces,
and this was checked rigorously and discussed in e.g. [5–7, 17, 57, 59].

• In gauged linear sigma models, decomposition was used to provide a novel non-
perturbative construction of branched double covers in [8], giving examples of
GLSMs with nonbirational phases, realizing examples of Kuznetsov’s homolog-
ical projective duality [34]. This construction has been utilized in the GLSM
community in a number of examples since, see e.g. [12, 25, 30] for a few exam-
ples.

• Applications to computing elliptic genera of pure gauge theory, studying IR lim-
its of pure supersymmetric gauge theories in two dimensions [2], were discussed
in [16].

• Recently decomposition has been applied [44–46] to understand and simplify
the Wang-Wen-Witten anomaly resolution proposal [62], as we shall discuss in
section 7.

4 Multiverse interference, portals, and wormholes

Next, let us summarize some of the more entertaining features of decomposition:



10 Eric Sharpe

• Multiverse interference effects. We have already seen that summing over uni-
verses has the effect of projecting out some nonperturbative contribution, hence a
“multiverse interference effect.” Our primary exmaples was of a two-dimensional
SU(2) gauge theory with center-invariant matter, for which, schematically,

QFT(SU(2)) = QFT(SO(3)+)
∏

QFT(SO(3)−) . (19)

• Fundamentally-charged Wilson lines are defects bridging universes. Consider for
example two-dimensional abelian BF theory at level k. This theory decomposes
into a disjoint union of k invertible field theories. The projectors are

Πm =
1
k

k−1

∑
n=0

ξ
nmOn, (20)

where ξ = exp(2πi/k) and

On = : exp(nB) : . (21)

These local operators have clock-shift commutation relations with the Wilson
lines (see e.g. [27])

OpWq = ξ
pqWqOp, (22)

which algebraically are equivalent to

ΠmWp = WpΠm+p mod k. (23)

Thus, moving a projector past a Wilson line changes the projector, and so Wil-
son lines in abelian BF theory act as (nondynamical) defects bridging different
universes.

• Wormholes between universes. This is how GLSMs realize branched double cov-
ers nonperturbatively [8]. Consider for example a GLSM with gauge group U(1),
two chiral superfields pa of charge +2 and four chiral superfields φi of charge−1,
with a superpotential

W = ∑
i j

φiφ jAi j(p). (24)

In the phase r� 0, this describes a branched double cover of P1, where the sheets
of the cover are (approximate) universes, spanned by the p fields (of nonminimal
charge), and the branch locus is the region where the mass matrix Ai j develops
zero eigenvalues, forming a Euclidean wormhole.

5 Specifics on orbifolds

Now, let us turn to examples of decomposition in two-dimensional orbifolds.
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Consider an orbifold [X/Γ ], where K ⊂ Γ acts trivially, and let G = Γ /K. We
can write Γ as

1 −→ K −→ Γ −→ G −→ 1. (25)

Decomposition is known for general extensions [26], but for simplicity in this
overview, let us assume for the moment that this is a central extension, so that K
is a subset of the center of Γ . Let [ω] ∈ H2(G,K) denote the element of group
cohomology classifying the extension.

In this case, if K acts trivially on X and lies within the center of Γ , then this
orbifold decomposes as

QFT([X/Γ ]) = QFT

∏

ρ∈K̂

[X/G]ω̂(ρ)

 , (26)

where K̂ denotes the set of isomorphism classes of irreducible representations of
K, and ω̂(ρ) represent discrete torsion phases, essentially finite-group analogues of
theta angles, which is the image of the extension class under ρ:

H2(G,K)
ρ−→ H2(G,U(1)),

ω 7→ ω ◦ρ = ω̂(ρ).

This will be a finite-group analogue of the SU(2) decomposition described ear-
lier, with [X/Γ ] playing the analogue of the SU(2) theory and the [X/G]ω̂(ρ) theories
playing the analogue of the SO(3)± theories.

To justify this decomposition, we must first provide projectors. Corresponding to
any irreducible representation R ∈ K̂, the projector is [54]

ΠR = ∑
i

dimRi

|K| ∑
k∈K

χRi

(
k−1)

τk, (27)

where τk is a twist field for the trivially-acting element k ∈ K, χR(g) denotes the
character of g in representation R, and the Ri are a set of representatives of the ir-
reducible representations. (For a detailed examination of why trivially-acting group
elements have associated twist fields, and the unitarity violations that ensue if one
assumes otherwise, see [40].) It can be shown that these projectors have the expected
properties, namely

ΠRΠS = δR,SΠR, ∑
R

ΠR = 1. (28)

As the twist fields in this case can be understood formally as the center of the
group algebra, this expression for the projector is a formal consequence of Wedder-
burn’s theorem in mathematics (see e.g. [35, section XVII.3]).

To make this more concrete, let us examine all the details in one particular exam-
ple (taken from [26, section 5.2]). Take Γ = D4, the eight-element dihedral group,
with center K = Z2, which we will assume acts trivially on X . In this case, decom-
position (26) predicts
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QFT([X/D4]) = QFT
(
[X/Z2×Z2]w/o d.t.

)∏
QFT([X/Z2×Z2]d.t.) , (29)

a disjoint union of two Z2×Z2 orbifolds, one with discrete torsion, and the other
without.

In passing, note that this is a very precise analogue of the earlier example of an
SU(2) gauge theory (compare [X/D4]) decomposing into a pair of SO(3) theories
(compare [X/Z2×Z2]).

Now, let us check this statement. First, we consider projection operators. If let let
z ∈D4 denote the generator of the (trivially-acting) Z2 center, and ẑ the correspond-
ing twist field, then ẑ2 = 1, and the projectors are

Π± =
1
2
(1± ẑ) , (30)

which obey
Π

2
± = Π±, Π±Π∓ = 0, Π++Π− = 1. (31)

These projectors are in principle the specialization of (27) to this case, but in fact
here are sufficiently simple that they can be seen by inspection, as indeed was the
case in [26].

So far we have produced a pair of local projection operators, which tell us that the
theory breaks into two pieces, but to verify the decomposition 29, we need more in-
formation about the pieces. To that end, we will next compute the partition function
of this orbifold.

To compute the partition function, we need to describe the dihedral group more
explicitly. Briefly, it is generated by elements z (generating the center), a, and b,
whose products we list below:

D4 = {1,z,a,b,az,bz,ab,ba = abz}. (32)

Let us compute the partition function on T 2. For any orbifold [X/Γ ], the partition
function on T 2 is

ZT 2 ([X/Γ ]) =
1
|Γ | ∑

gh=hg
Zg,h, (33)

where each Zg,h represents the path integral contribution from the Γ nonperturbative
sector (“twisted sector”) defined by the commuting pair g,h ∈ G. (Since Γ is finite,
there is no perturbative contribution to the Γ gauge theory, only nonperturbative
contributions.) Schematically, each Zg,h is a path integral sum over maps T 2 → X
with branch cuts defined by g,h:

Zg,h =

(
g

h
−→ X

)
(34)

(In order for the corners of the square to close, one only sums over commuting
g,h ∈ G.)

We will argue that
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ZT 2 ([X/D4]) = ZT 2 ([X/Z2×Z2]) + ZT 2 ([X/Z2×Z2]d.t.) (35)

verifying decomposition (29).
To that end, first note that since z acts trivially and each Zg,h only depends upon

boundary conditions, we immediately have that

Zg,h = g
h

= gz
h

= g
hz

= gz
hz

= Zgz,hz. (36)

Each square g h can be associated (modulo automorphisms) with a Γ bundle, so
this is a symmetry amongst the nonperturbative sectors of the Γ orbifold. Further-
more, those sectors are related by tensoring in a BZ2 bundle:

Zg,h = g
h

z 1−→ gz
h

z z−→ g
hz

z 1−→ gz
hz

= Zgz,hz (37)

This is the BZ2 one-form symmetry, explicitly.

Next, to help clarify, write the elements of Z2×Z2 = D4/Z2 as

Z2×Z2 = {1,a,b,ab}, (38)

where a is the projection of {a,az}, and b is the projection of {b,bz}. Then, we see
that each D4 twisted sector (Zg,h) that appears is the same as a D4/Z2 = Z2×Z2
twisted sector, except for the sectors

a

b

, a

ab

, b

ab

, (39)

which do not appear, because their lifts do not commute in D4. (These form a mod-
ular orbit – modular invariance is ensured at every step.)

This is a restriction on the nonperturbative sectors.

So far, we have argued that

ZT 2 ([X/D4]) =
|Z2×Z2|
|D4|

|Z2|2 (ZT 2 ([X/Z2×Z2]) − (some twisted sectors)) ,

= 2(ZT 2 ([X/Z2×Z2]) − (some twisted sectors)) . (40)

In particular, despite the fact that the Z2 acts trivially, this is a different theory
than the Z2 ×Z2 orbifold. Physics knows when we gauge even a trivially-
acting group.
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We can simplify the expression above via the use of discrete torsion [60], which
is a set of modular-invariant phases that one can add to partition functions – in
essence, theta angles for the finite gauge theory. The new partition function in a G
orbifold on T 2, for example, has the form

ZT 2 ([X/G]) =
1
|G| ∑

gh=hg
ε(g,h)Zg,h, (41)

where ε(g,h) represent the discrete torsion phases.
Now, in a G orbifold, possible choices of discrete torsion phases are classified by

H2(G,U(1)). In the case G = Z2×Z2,

H2(Z2×Z2,U(1)) = Z2, (42)

and the twisted sectors that get a phase (specifically, a sign) are

a

b

, a

ab

, b

ab

, (43)

the same sectors that are omitted from the Z2×Z2 orbifold partition functino in the
description of the D4 orbifold partition function in (40). Thus, we see that the D4
partition function on T 2 can be rewritten as

ZT 2 ([X/D4]) = ZT 2 ([X/Z2×Z2]) + ZT 2 ([X/Z2×Z2]d.t.) . (44)

This matches the prediction of decomposition (29) in this case.

In particular, adding the universes has the effect of cancelling out some of the
nonperturbative sectors, namely those listed in (39). This is an example of a
multiverse interference effect.

So far, we have verified that partition functions on T 2 reproduce decomposi-
tion. Analogous computations on higher-genus Riemann surfaces also reproduce
decomposition, though the combinatorics is more complex. See [26, section 5.2] for
details.

Now, let us turn to massless spectrum computations. (In principle, this is all im-
plicit in the partition function computations, but we find it instructive to explicitly
study this particular facet.) For the case X = T 6, with a standard Z2×Z2 action [61],
the massless spectrum of [T 6/D4] is easily computed and given by
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2
0 0

0 54 0
2 54 54 2

0 54 0
0 0

2

(45)

This result is problematic – the 2’s in the corners signal a violation of cluster de-
composition, which ordinarily would be reason to believe that the result is incorrect.
However, as we have seen, cluster decomposition arises in any theory describing a
disjoint union of QFTs, and so this is not unexpected. Hand-in-hand, the 2’s can
also be interpreted to mean that the theory has two components. In particular, the
massless spectra of the [T 6/Z2×Z2] orbifolds, with and without discrete torsion,
are given by [61]

1
0 0

0 51 0
1 3 3 1

0 51 0
0 0

1

+

1
0 0

0 3 0
1 51 51 1

0 3 0
0 0

1

(46)

It is easy to see that the sum of the two [T 6/Z2×Z2] orbifold spectra matches that
of [T 6/D4], verifying decomposition (29).

This example was not a one-off, but in fact verifies the general prediction of [26]
for orbifolds with trivially-acting subgroups.

In most of this review we have focused on cases of gauge theories and orbifolds in
which the trivially-acting subgroup is in the center, but more general examples exist
and have been studied. Decomposition in the more general case is the statement [26]

QFT([X/Γ ]) = QFT
([

X× K̂
G

]
ω̂

)
, (47)

where the discrete torsion on universes ω̂ is described in [26]. In the general case,
where the trivially-acting K ⊂ Γ need not be central, G = Γ /K can act nontrivially
on the set of isomorphism classes of irreducible representations K̂, and the universes
are identified with orbits of G in K̂. In the special case of central extensions, the G
action on K̂ is trivial, the orbits are single elements of K̂, and the decomposition
reduces to a disjoint union of copies of [X/G]ω̂ , indexed by K̂, as described earlier
in (26).

For example, consider the orbifold [X/H], where H is the eight-element group of
unit quaternions, and where K = 〈i〉 ⊂H acts trivially. In this case, the center of H is
Z2, which is contained within K ∼= Z4, but K also has elements that are not central.
On the set K̂, G leaves two elements invariant but exchanges two elements, so that
there are a total of three G orbits, and three universes.
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As is discussed in detail in [26, section 5.4], in this case decomposition predicts

QFT([X/H) = QFT
(
X

∏
[X/Z2]

∏
[X/Z2]

)
, (48)

which is checked by exhibiting projection operators, computing partition functions
at arbitrary genus, and comparing massless spectra. In particular, the universes in
this example are not all just the same orbifold with different choices of discrete
torsion, but rather they are qualitatively different from one another.

So far we have outlined decomposition in ordinary orbifolds with trivially-acting
subgroups. Next we outline decomposition in such orbifolds in the presence of dis-
crete torsion, following [43].

Consider an orbifold [X/Γ ]ω , where K ⊂ Γ acts trivially, ω ∈H2(Γ ,U(1)) is an
element of discrete torsion, and we define G = Γ /K, so that

1 −→ K ι−→ Γ
π−→ G −→ 1. (49)

For simplicity, we assume that this is a central extension (that K maps to a subgroup
of the center of Γ ). It will be helpful to utilize the maps below:

H2(G,U(1)) π∗−→
(
Ker ι

∗ ⊂ H2(Γ ,U(1))
) β−→ H1(G,H1(K,U(1))) = Hom(G, K̂).

(50)
Then, we can describe decomposition of [X/Γ ]ω in terms of the following cases:

1. If ι∗ω 6= 0, then

QFT([X/Γ ]ω) = QFT
([

X× K̂ι∗ω

G

]
ω̂

)
. (51)

2. If ι∗ω = 0 and β (ω) 6= 0, then

QFT([X/Γ ]ω) = QFT

([
X× ̂Coker β (ω)

Kerβ (ω)

]
ω̂

)
. (52)

3. If ι∗ω = 0 and β (ω) = 0, then ω = π∗ω for some ω ∈ H2(G,U(1)) and

QFT([X/Γ ]ω) = QFT
([

X× K̂
G

]
ω̂+ω

)
, (53)

essentially the same decomposition as in the case of no discrete torsion, but with
the discrete torsion on the universes shifted by ω .

This description was developed more systematically in [43], which also checked
the results in numerous examples.
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6 Quantum symmetries in noneffective orbifolds

As one final prerequisite before describing the Wang-Wen-Witten anomaly resolu-
tion procedure in orbifolds [62], we describe some novel modular-invariant phases
that one can add to noneffective orbifolds, which were deemed ‘quantum symme-
tries’ in [46] (see also [56]) as they generalize the notion of quantum symmetries in
orbifolds from the late 1980s.

Briefly, these phases describe actions on twisted sector states. Consider an orb-
ifold [X/Γ ] in which a subgroup K ⊂ Γ acts trivially, and define G = Γ /K, as
before. For simplicity, assume that K is central in Γ , so that

1 −→ K −→ Γ −→ G −→ 1 (54)

is a central extension. In this case, the quantum symmetries (as the term is used
in [46]) are classified by H1(G,H1(K,U(1))) = Hom(G, K̂), and describe an action
of K on G-twisted sector states. Schematically, in terms of path integral data,

gz
h

= B(π(h),z)

(
g

h

)
, (55)

for B ∈ H1(G,H1(K,U(1))), z ∈ K, and g,h ∈ Γ .
It will be useful to note that the gruop classifying quantum symmetries fits into

an exact sequence [28](
Ker ι

∗ ⊂ H2(Γ ,U(1))
) β−→ H1(G,H1(K,U(1)))

d2−→ H3(G,U(1)). (56)

(Technically, this is part of a seven-term sequence slightly extending the inflation-
restriction sequence.) The map d2 is a differential in the Lyndon-Hochschild-Serre
spectral sequence, and for any ω ∈ Ker ι∗,

β (ω)(π(g),z) =
ω(g,z)
ω(z,g)

, (57)

for g ∈ Γ , z ∈ K. (This is the same map β that appeared in (50).)
The first term in the sequence above can be interpreted in terms of discrete tor-

sion, and as in two-dimensional orbifolds [X/G] gauge anomalies are counted by
H3(G,U(1)), the last term can be interpreted in terms of anomalies, so the se-
quence (56) can be represented schematically as

(discrete torsion)
β−→ (quantum symmetries)

d2−→ (anomalies) . (58)

As this sequence suggests, those quantum symmetries in the image of β are
equivalent to choices of discrete torsion, and in fact are equivalent to quantum sym-
metries in the older sense of the term.
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For applications to Wang-Wen-Witten, we will need quantum symmetries B such
that d2(B) 6= 0. As the sequence above is exact, such quantum symmetries are nec-
essarily not equivalent to discrete torsion.

Before going on, let us briefly describe decomposition in orbifolds with quantum
symmetries. Briefly,

QFT([X/Γ ]B) = QFT

 ∏

ĈokerB

[X/KerB]ω̂

 , (59)

where we interpret the quantum symmetry B as an element of Hom(G, K̂). Decom-
position in this case is more or less uniquely dictated by results for decomposition in
orbifolds with discrete torsion such that ι∗ω = 0 and β (ω) 6= 0, as described earlier
in (52). It was also checked in numerous examples in [46].

7 Wang-Wen-Witten anomaly resolution procedure

In [62], Wang, Wen, and Witten proposed an algorithm to resolve gauge anomalies
in anomalous orbifolds [X/G]. In this section we will review that procedure, and
then observe how decomposition gives an alternative interpretation of the result that
clarifies why the procedure removes the anomaly.

We will use the fact that in two dimensions, gauge anomalies in finite G gauge
theories are classified by elements of H3(G,U(1)). In the anomalous orbifold
[X/G], we will let α ∈ H3(G,U(1)) denote the anomaly.

The Wang-Wen-Witten procedure has two steps:

1. We replace G by a larger group Γ ,

1 −→ K −→ Γ
π−→ G −→ 1, (60)

which we will assume is a central extension, and where K acts trivially.
From decomposition, if all we did was to replace G by Γ , we would not have
resolved the orbifold, as physically [X/Γ ] is equivalent to copies and covers of
[X/G], as we have seen previously.

2. The second step of the Wang-Wen-Witten procedure is to turn on a quantum
symmetry phase B ∈ H1(G,H1(K,U(1))), chosen so that d2B = α . This implies
that π∗α ∈ H3(Γ ,U(1)) is trivial.

These two choices together – an extension Γ plus a choice of suitable quantum
symmetry B – resolve the anomaly.

From decomposition, we can see how the anomaly is resolved. Recall from (59
that

QFT([X/Γ ]B) = QFT

 ∏

ĈokerB

[X/KerB]ω̂

 . (61)
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As we chose the quantum symmetry B so that d2B = α , we have immediately that

α|KerB = 0. (62)

Thus, each orbifold [X/KerB] is automatically anomaly-free.
Put another way, the result of the Wang-Wen-Witten procedure – replacing [X/G]

by a larger orbifold [X/Γ ]B – is equivalen to replacing [X/G] by a collection of
smaller orbifolds [X/KerB], in which Ker B⊂ G is non-anomalous.

Let us see this explicitly in examples. We will consider several resolutions of
orbifolds of the form [X/G] for G = Z2×Z2. For this group, H3(G,U(1)) = (Z2)

3,
corresponding to the three Z2 subgroups, so if we write

G = Z2×Z2 = {1,a,b,ab}, (63)

then
H3(G,U(1)) = (Z2)

3 = 〈a〉 × 〈b〉 × 〈ab〉. (64)

To apply the Wang-Wen-Witten procedure, one must make two choices,

• a choice of larger gauge group Γ , and
• a choice of quantum symmetry.

We will list several examples of larger group Γ , and for each Γ , all possible choices
of quantum symmetry and the resulting theories.

For our first resolution, we take Γ = D4,

1 −→ Z2 −→ D4 −→ Z2×Z2 −→ 1. (65)

The quantum symmetry B is determined by its image on the generators {a,b}, and
we list all possibilites in table 1 (including cases in which we turn on discrete torsion
in the [X/Γ ] orbifold, in addition to the quantum symmetry).

Table 1 A list of all possible quantum symmetries, anomalies resolved, and corresponding orb-
ifolds [X/Γ ]B for the case Γ = D4. The first two columsn describe the quantum symmetry; the
column d2(B) gives the image of the quantum symmetry, and hence the anomaly that can be re-
solved; and the last two columns give the physical theory equivalent to [X/Γ ]B, for either choice
of discrete torsion in the Γ = D4 orbifold.

B(a) B(b) d2(B) [X/Γ ]B w/o d.t. [X/Γ ]B with d.t.
1 1 − [X/G]

∏
[X/G]d.t. [X/〈b〉]

-1 1 − [X/〈b〉] [X/G]
∏
[X/G]d.t.

1 -1 〈b〉 [X/〈b〉] [X/〈ab〉]
-1 -1 〈b〉 [X/〈ab〉] [X/〈a〉]

The first row of table 1 describes the case of no quantum symmetry. Nothing
is resolved, and the physical theories are (copies of) the G orbifold. The last two
rows are more interesting. These describe cases in which an anomaly in the sub-
group 〈b〉 ⊂G can be resolved. The resulting physical theories, listed in the last two
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columns (corresponding to either choice of discrete torsion in the Γ = D4 orbifold)
are orbifolds by subgroups not containing 〈b〉, and so by assumption are anomaly-
free. In particular, we see that the Wang-Wen-Witten prescription works, explicitly.

For our next resolution of the anomalous [X/G] orbifold, for the same G as be-
fore, we take Γ =H, the eight-element group of unit quaternions,

1 −→ Z2 −→ H −→ Z2×Z2 −→ 1. (66)

We list all possibilites for the quantum symmetry in table 2.

Table 2 A list of all possible quantum symmetries, anomalies resolved, and corresponding orb-
ifolds [X/Γ ]B for the case Γ = H. The first two columsn describe the quantum symmetry; the
column d2(B) gives the image of the quantum symmetry, and hence the anomaly that can be re-
solved; and the last column gives the physical theory equivalent to [X/Γ ]B. (No discrete torsion is
possible for this choice of Γ .)

B(a) B(b) d2(B) [X/Γ ]B
1 1 − [X/G]

∏
[X/G]d.t.

-1 1 〈a〉,〈ab〉 [X/〈b〉]
1 -1 〈b〉,〈ab〉 [X/〈a〉]
-1 -1 〈a〉,〈b〉 [X/〈ab〉]

The first row of table 2 describes the case of no quantum symmetry. In this case,
all of the nontrivial quantum symmetries can be used to resolve an anomaly, and in
each case, the resulting physical theory [X/Γ ]B is equivalent to an orbifold which
does not intersect an anomalous subgroup. Again, we see that the Wang-Wen-Witten
prescription works.

For our next resolution of the anomalous [X/G] orbifold, for the same G as be-
fore, we take Γ = Z2×Z4,

1 −→ Z2 −→ Z2×Z4 −→ Z2×Z2 −→ 1. (67)

We list all possibilites for the quantum symmetry in table 3.

Table 3 A list of all possible quantum symmetries, anomalies resolved, and corresponding orb-
ifolds [X/Γ ]B for the case Γ = Z2×Z4. The first two columsn describe the quantum symmetry;
the column d2(B) gives the image of the quantum symmetry, and hence the anomaly that can be
resolved; and the last two columns give the physical theory equivalent to [X/Γ ]B, for either choice
of discrete torsion in the Γ orbifold.

B(a) B(b) d2(B) [X/Γ ]B w/o d.t. [X/Γ ]B with d.t.
1 1 − [X/G]

∏
[X/G] [X/G]d.t.

∏
[X/G]d.t.

-1 1 〈ab〉 [X/〈b〉] [X/〈b〉]
1 -1 〈b〉,〈ab〉 [X/〈a〉] [X/〈a〉]
-1 -1 〈b〉 [X/〈ab〉] [X/〈ab〉]
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The details here are different, but we see the same overall pattern. As before, the
first row corresponds to the case of no quantum symmetry. In each of the next three
rows, we see that it is possible to resolve an anomaly, and if one chooses B such that
d2(B) describes the anomaly, then the resulting physical theory [X/Γ ]B is equivalent
to an orbifold by a subgroup which does not contain the anomalous subgroup. As
before, Wang-Wen-Witten works.

So far we have picked ‘minimal’ resolutions. For our next resolution of the
anomalous [X/G] orbifold, for the same G as before, we take Γ = Z2×H,

1 −→ Z2×Z2 −→ Z2×H −→ Z2×Z2 −→ 1, (68)

so that in effect there is an extra Z2. We list all possibilities for the quantum sym-
metry in table 4.

Table 4 A list of all possible quantum symmetries, anomalies resolved, and corresponding orb-
ifolds [X/Γ ]B for the case Γ = Z2H. The first two columsn describe the quantum symmetry; the
column d2(B) gives the image of the quantum symmetry, and hence the anomaly that can be re-
solved; and the last column gives the physical theory equivalent to [X/Γ ]B.

B(a) B(b) d2(B) [X/Γ ]B
1 1 − ∏

2 ([X/G]
∏
[X/G]d.t.)

-1 1 〈a〉,〈ab〉 ∏
2[X/〈b〉]

1 -1 〈b〉,〈ab〉 ∏
2[X/〈a〉]

-1 -1 〈a〉,〈b〉 ∏
2[X/〈ab〉]

The details are different, but the pattern is the same: by picking B such that the
anomaly is described by d2(B), the resulting physical theory is non-anomalous, as
predicted by Wang-Wen-Witten.

8 Conclusions

In this article we have reviewed work on decomposition, the observation that some-
times one local quantum field theory is equivalent to a disjoint union of other local
quantum field theories, known as universes. This arises when a d-dimensional quan-
tum field theory has a (d−1)-form symmetry. After reviewing examples of decom-
position and its properties (such as multiverse interference effects), we discussed
the application to the anomaly-resolution procedure of Wang-Wen-Witten [62].
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