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Abstract Clustering is a process of assigning data points into groups (clusters). The
goal is to assign “similar” points to the same cluster, while “different” points be-
long to distinct clusters. k-means and its modification form a very important and
commonly used group of clustering methods. k-means is fast, simple and can be
easily implemented in any programming package. Classical k-means leads to a lo-
cal minimum of a function that represents the sum of the squares of the Euclidean
distances between all the points and the centres of the clusters where the points were
assigned. Therefore, the mathematical interpretation of k-means is straigthforward.
In this paper, we use k-means methods and their modifications to produce clusters in
timeseries data and use these clusters to create classification rules for distinguishing
between the classes. The results of numerical experiments demonstrate that these
fast and simple approaches provide high classification accuracy.

1 Introduction

Clustering is a process of grouping similar points. This technique allows one to
identify the structure of data. In signal processing, there are two main approaches for
representing signals (timeseries): by treating each time moment as an independent
dimension or by constructing a prototype curve for each group of similar timeseries.
In this study the former approach is used: each timeseries of n time moments is
simply a point in Rn. At first glance, this approach completely ignores the fact that
the timeseries values at the nearby time moment strongly relate to each other, but
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the corresponding optimisation problems are simple and can be handled even for
high dimensional timeseries. Our numerical experiments demonstrate that, despite
its simplicity, this approach is very efficient for the data we use in this study.

The k-means algorithm is a fast and well-studied clustering method developed for
grouping points in Rn. The name “k-means” was first proposed in 1967 by James
MacQueen [6]. Mathematically, this method is based on the minimisation of the so-
called total dissimilarity function, which is the sum of squares of the Euclidean dis-
tances between the points and the cluster centres to which these points are assigned.
There are a number of modifications of k-means: k-medians, where the dissimilarity
is computed in the Manhattan-distance formulation, some combinations of k-means
and k-medians. For theoretical and computational properties of this group of meth-
ods and their applicability to data analysis and signal processing, we refer to [2, 10].

Another clustering method that we use in this study is k-medoids. The k-medoids
problems are known to be NP-complete [8]. A comprehensive review of such meth-
ods can be found in [4].

In general, the k-medoids methods are slower than k-means, but in some cases
they may be more suitable. For example, when the dissimilarity measure is not the
square of the Euclidean distance and/or it is beneficial to assign one of the sample
point from the data to the cluster centres. Examples of such problems can be found
in [3].

2 Mathematical background of k-means

2.1 k-means and k-means with L1 norm

The classical k-means method contains two steps.

1. Assign each point to the cluster with the nearest centre. The initial location of
the cluster centres can be chosen in a number of ways. One of the most common
ways is to take k random points from the data.

2. For each cluster, we recompute the centres by minimising the total sum of dis-
similarities within each cluster.

We repeat these two steps until none of the points move from one cluster to
another. In the case when the square of the Euclidean distance is chosen as the dis-
similarity function, the minimal total dissimilarity within each cluster is simply the
barycenter of the cluster and therefore the algorithm is very fast. This implementa-
tion of k-means terminates at a local minimum of the function

min
N

∑
i=1

min
c1,...,ck

‖xi− c j‖, (1)

where N is the total number of points in the dataset and c1, . . . ,ck are the cluster
centres (each point is assigned to the cluster with the nearest centre).
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k-medians has a similar structure, but the dissimilarity function is based on L1
norm (step 1) and at step 2 one computes the median point rather than the barycentre.
Finally, k-means with L1 is a combination of k-means and k-medians: step 1 is the
same as in k-medians, while the updated centre is the barycentre.

2.1.1 k-medoids

As mentioned in section 1, the k-medoids problem (in its classical formulation) is
NP-complete [8], but there are a number of approaches for k-medoids that deal with
some reformulations of the classical k-medoids problem, for example, the Partition-
ing Around Medoids (PAM) algorithm [5]. PAM relies on iterative clustering rather
than optimisation and uses a number of heuristics.

In its classical form, the k-medoids problem can be formulated as an integer
linear programming problem (ILPP) [7]. Assume that there are n data points in total
and the distance matrix

D = {di j}, i = 1, . . . ,n, j = 1, . . . ,n.

The goal is to select k points as centres. The decision variables are binary: xi j ∈
{0,1}, i= 1, . . . ,n, j = 1, . . . ,n and yi ∈ {0,1}, i= 1, . . . ,n. Variable yi is 1 if point i
is treated as a centre, otherwise, this variable is zero. Variable xi j is 1 if point i was
assigned to centre j. The corresponding optimisation problem is as follows:

min
n

∑
i=1

n

∑
j=1

di jxi j (2)

subject to
n

∑
j=1

xi j = 1, i = 1, . . . ,n; (3)

xi j ≤ yi, i, j = 1, . . . ,n; (4)
n

∑
i=1

yi = k; (5)

xi j, yi ∈ {0,1}, i, j = 1, . . . ,n. (6)

Coefficients di j are the distances between points i and j (based on chosen similarity).
Constraints (3) ensure that each point is assigned to a single centre. Constraints (4)
ensure that point i can only be assigned to point j if this point is also a centre.
Finally, constraint (5) ensures that exactly k points are selected as centres. It is clear
that problem (2)-(6) is an ILPP. It can be solved, for example, by using a Branch
and Bound method.
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3 Numerical experiments

In our study, we use EEG signals (brain waves), from a publicly available dataset,
collected by the epileptic center at the University of Bonn, Germany [1]. This dataset
consists of five classes: 1, 2, 3, 4 and 5. Each class contains 100 signal segments
recorded during 23.6 seconds with a sampling frequency of 173.61 Hz, which means
that every signal has 4097 recordings.

The same dataset (class 1 and class 2 only) was used in [9], where the au-
thors applied a more advanced and time-consuming optimisation based approach
for data classification. The models in [9] are more accurate (for separating class 1
and class 2), but our approach is simple and fast. Moreover, it provides a reason-
able level of classification accuracy for separating the remaining classes within this
dataset and this topic was not touched at all in [9].

Classes 1 and 2 were recorded from five healthy volunteers. Volunteers were
relaxed and awake with eyes open (class 1) and eyes closed (class 2). Classes 3
and 4 correspond to the patients who are seizure free during the recording, but had
a seizure in the past and it occurred in the opposite hemisphere of the brain (class 3)
or in the same (class 4). Finally, class 5 segments were recorded during an active
stage of seizure.

In our experiments, we take 80% of the points of each class for the training set,
while the remaining 20% are the test set. All the experiments were performed on all
possible pairs of classes (pair-wise separation). We produced up to six clusters in
each class (training sets), assigned the points from the test sets to the clusters with
the nearest centres and calculated the percentage of correctly classified points (test
set classification accuracy). We use four types of clustering: k-means, k-means with
L1, k-medoids with squared Euclidean distance as the similarity measure (we call it
k-medoids for simplicity) and k-medoids with L1 as the similarity measure.

The k-means group of clustering is very sensitive to the choice of the initial
centres. To be able to compare results obtained for different clustering settings, we
always choose the first k points from the data as initial centres rather than choosing
them randomly.

Tables 1-4 represent the test set classification results. In these tables, we only
present the highest classification accuracy for each pair-wise combination of classes.
The conclusions are as follows.

1. The k-means group of methods is significantly faster and more accurate than the
k-medoids group.

2. Theoretically, the increase in the number of clusters leads to more accurate ap-
proximations of classes and higher classification accuracy. In practice, this is not
always the case. One possible explanation for this observation is that the increase
in the number of clusters leads to the increase in the dimension of the corre-
sponding optimisation problems. Since we can only guarantee local optimality,
the approximation quality for a higher number of clusters may be questionable.

3. Despite their simplicity, methods from the k-means group demonstrated their
classification efficiency even for clustering very complex and long timeseries.
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Table 1 k-means clustering and classification results

Classes Optimal number of clusters Test classification Time (seconds)
to separate per class (highest test accuracy) accuracy

1,2 2,3 52.5% 1.016071
1,3 5,5 82.5% 0.961105
1,4 6,6 72.5% 1.019396
1,5 6,6 62.5% 0.99491
2,3 4,4 77.5% 1.01654
2,4 5,6 77.5% 1.050314
2,5 5,6 65% 0.974254
3,4 4,6 72.5% 1.051843
3,5 1,2 65% 0.943939
4,5 6,6 65% 1.01614

Table 2 k-means with L1 clustering and classification results

Classes Optimal number of clusters Test classification Time (seconds)
to separate per class (highest test accuracy) accuracy

1,2 5,6 57.5% 1.496592
1,3 4,4 80% 1.617608
1,4 5,5 77.5% 1.428125
1,5 1,3 72.5% 1.354719
2,3 2,2 72.5% 1.714098
2,4 5,5 77.5% 1.341092
2,5 4,6 77.5% 1.338823
3,4 1,1 72.5% 1.606779
3,5 1,2 70% 1.623985
4,5 1,1 67.5% 1.29161

Table 3 k-medoids clustering and classification results

Classes Optimal number of clusters Test classification Time (seconds)
to separate per class (highest test accuracy) accuracy

1,2 1,2 55% 33.510218
1,3 2,6 50% 33.318993
1,4 1,1 52.5% 33.941688
1,5 1,2 52.5% 33.284459
2,3 2,1 57.5% 33.552932
2,4 2,1 55% 33.776406
2,5 1,2 52.5% 33.459145
3,4 5,1 60% 33.954362
3,5 1,2 52.5% 33.355816
4,5 1,2 52.5% 33.840175
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Table 4 k-mediods with L1 clustering and classification results

Classes Optimal number of clusters Test classification Time (seconds)
to separate per class (highest test accuracy) accuracy

1,2 1,3 57.5% 31.80871
1,3 1,3 52.5% 31.541411
1,4 2,5 62.5% 31.948276
1,5 1,2 52.5% 31.609486
2,3 3,1 60% 31.762258
2,4 1,1 52.5% 31.880342
2,5 1,2 52.5% 31.729709
3,4 3,5 70% 31.871092
3,5 1,2 52.5% 31.58272
4,5 1,2 52.5% 31.682192

4 Conclusions and further research directions

Our numerical experiments demonstrated that k-means group of methods can be
used for distinguishing classes of timeseries recorded from epileptic patients. For
pair-wise separation of classes, the test set classification accuracy is around 70%-
80%.

For our future studies, we identify two main directions.

1. The k-means group of methods is very sensitive to the initial choice of cluster
centres and therefore the study on the choice of efficient initial centres is needed.

2. The k-medoids group of methods did not perform well in our experiments.
The only potential direction here is the separation between class 3 and class 4,
which essentially means the prediction which brain hemisphere one can expect
a seizure. Despite being slow and not very accurate, this group of methods is
less sensitive to the initial choice of cluster centres and therefore still has some
potential if its efficiency is improved.
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