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Abstract We study the twisted elliptic genera associated to the BPS strings in the
twisted circle compactification of 6d (1,0) SCFTs. Such objects can arise when the
6d gauge algebra allows outer automorphism. We study several aspects of twisted
elliptic genera including twisted elliptic blowup equations, Γ1(N) modular bootstrap
and spectral flow symmetry. This is a short summary of the author’s talk at MATRIX
Program “2D Supersymmetric Theories and Related Topic”, and based on a joint
work with Kimyeong Lee and Xin Wang.

1 Introduction

For the last decade, there has been huge progress on 6d (1,0) superconformal field
theories (SCFTs) in both classification [1] and computation. These 6d SCFTs are ge-
ometrically engineered by F-theory compactified on local elliptic Calabi-Yau (CY)
threefolds, and contain BPS strings with worldsheet theories as some highly non-
trivial 2d (0,4) gauge theories. Upon circle compactification and deformations, they
produce 5d Kaluza-Klein (KK) theories which are conjectured to flow to all 5d
SCFTs by decoupling matters. A simple example is the 6d E-string theory, geomet-
rically engineered by local half-K3 Calabi-Yau threefold. The worldsheet theories
for k E-strings are certain 2d (0,4) O(k) gauge theories [2]. Upon circle compactifi-
cation, E-string theory gives the well-known 5d SU(2) theory with 8 fundamentals.
On the partition function level, the above correspondence can be summarized as the
following relation chain

E2d (0,4) SCFT = Z6d (1,0) SCFT
R4×T 2 = Z5d KK

R4×S1 = Zref. top.
local elliptic CY3. (1)
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This states that the partition function of a 6d (1,0) SCFT on 6d Omega background
should be equal to the elliptic genera of the 2d worldsheet theories, and the Nekrasov
partition function of the 5d KK theory, and the refined topological string partition
function on the underlying local elliptic Calabi-Yau threefold. The relation chain (1)
has been tested extensively for many theories including E-string theory.

When a 6d (1,0) SCFT has a discrete global symmetry, one can do twisted circle
compactification to a 5d KK theory [3]. There are two possibilities:

1. gauge algebra allows outer automorphism: folding vector multiplet.
2. quiver structure has discrete symmetry: folding tensor multiplet.

Here we focus on the first kind. In such situations, fractional KK charges naturally
appear upon circle compactification and the local elliptic Calabi-Yau threefolds are
generalized to local genus-one fibered ones. For partition functions, we expect a
twisted version of relation chain (1):

E2d (0,4) SCFT
twisted = Z6d (1,0) SCFT

R4×S1×S1,twisted = Z5d KK
R4×S1 = Zref. top.

local genus-one fibered CY3. (2)

We are interested in the twisted elliptic genera arising here.
Now we show some simple examples of twisted 6d SCFTs. A 6d (1,0) SCFT

with rank-one tensor branch is specified by self-intersection number n, gauge al-
gebra G, flavor symmetry F and matter represention R. The (n,G,F,R) is highly
constrained by the Calabi-Yau condition. The gauge algebras that allow outer au-
tomorphism are classified by twisted affine Lie algebras which are E(2)

6 , D(2)
r+4, A(2)

r

and D(3)
4 [4, Chapter 8]. Removing the affine node, we denote the truncated algebra

as G̊ which is the 5d low energy gauge algebra. The twisted matter content R̊ are in
the representation of G̊ and can have fractional KK charges. The flavor symmetry
normally get reduced which we denote as F̊ . We summarize some typical twisted
6d (1,0) rank one theories with n ≥ 3 in Table 1. The main goal of this work is to
compute the twisted elliptic genera of all these theories and study their properties.

Table 1 Some typical twisted 6d (1,0) rank-one theories with n ≥ 3. The subscripts in R̊ denote
the KK charge, and V,F,S denote vector, fundamental and spinor representation respectively. The
constants c are used in the modular bootstrap in Sect 3. There are four pure gauge theories: n= 6
with E(2)

6 , n= 4 with D(2)
4 ,D(3)

4 and n= 3 with A(2)
2 .

n G G̊ R̊ F̊ c

6 E(2)
6 F4 − − 5/4

4 D(3)
4 G2 − − 5/9

4 D(2)
r+4 Br+3 2r(V0⊕11/2) sp(2r) 3/4

4 E(2)
6 F4 F0⊕F1/2⊕10⊕11/2 sp(1) 1

3 A(2)
2 C1 − − 5/16

3 D(2)
4 B3 V0⊕11/2⊕S0⊕S1/2 sp(1)× sp(1) 1/2

3 D(3)
4 G2 F0⊕F1/3⊕F2/3⊕10⊕11/3⊕12/3 sp(1) 1/2
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2 Twisted Elliptic Blowup Equations

Blowup equations as the functional equations of Nekrasov partition functions [5]
were proposed by Nakajima and Yoshioka [6] for 4d N = 2 SU(N) gauge theories
to prove the Nekrasov conjecture. They originated by comparing the Nekrasov par-
tition functions on the Omega background C2

ε1,ε2
and on its one-point blown-up. By

blowing up and down the exceptional divisor, it can be expected that the two parti-
tion functions should be closely connected. Blowup equations are later generalized
to various 4d/5d/6d gauge theories and become powerful tools to solve partition
functions and refined BPS invariants. For the elliptic genera associated to 6d (1,0)
SCFTs, such functional equations were established in [7, 8, 9, 10] and called ellip-
tic blowup equations. Now we want to further generalize them to twisted elliptic
blowup equations and solve the twisted elliptic genera for all rank-one twisted theo-
ries. Some cases have been recently studied in [11]. For the total partition function Z
of refined topological strings on a non-compact Calabi-Yau threefold X , the general
form of blowup equations was proposed in [12]:

Λ(ε1,ε2,mi)Z (ε1,ε2, ti +π iBi)

= ∑
k∈Zb4

(−1)|k|Z (ε1,ε2− ε1, ti +(Ci jk j +Bi/2)ε1 +π iBi)

×Z (ε1− ε2,ε2, ti +(Ci jk j +Bi/2)ε2 +π iBi) ,

(3)

Here b4 counts the number of compact divisors of X . The ti is the Kähler parameter
and Ci j is the intersection numbers of divisors and curves in X . The Bi is the flux
for the corresponding Kähler parameter. The Λ(ε1,ε2,mi) is a function that only
depends on the mass parameters mi of the theory. The Λ(ε1,ε2,mi) ≡ 0 case is
called vanishing, otherwise unity. By geometric engineering, the partition function
can be written by 6d gauge quantities as

Z (ε1,ε2, ti) = eF cls
Z0(ε1,ε2,mG̊,mF̊)

(
1+

∞

∑
d=1

QdEd(ε1,ε2,mG̊,mF̊)

)
, (4)

Here F cls is the classical free energy, Z0 is the one-loop partition function, Ed is the
d-string twisted elliptic genus and Q counts the number of strings. As the classical
and one-loop part have known formulas, by substituting (4) into (3), we can derive
the functional equations of Ed which we call twisted elliptic blowup equations.

We find that for all twisted theories in Table 1, there exist unity blowup equations
such that the twisted d-string elliptic genera Ed(τ,mG̊,mF̊ ,ε1,2) can be explicitly
solved. We are particular interested in the reduced twisted one-string elliptic genus
defined by

Ered
1 (τ,ε+) =

θ1(τ,ε1)θ1(τ,ε2)

η(τ)2 E1(τ,ε1,ε2). (5)

The simplicity of Ered
1 is that it only depends on ε+ = (ε1 + ε2)/2 rather than both

ε1,ε2. We will discuss its modular bootstrap and spectral flow in the later sections.
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3 Modular Bootstrap for Γ1(N)

For untwisted 6d (1,0) SCFTs, the modular ansatz for reduced one-string elliptic
genus was proposed in [13] which involves Jacobi form on SL(2,Z). For twisted
cases, it is natural to expect from modularity that the modular ansatz should be
established on the principal congruence subgroup Γ1(N). Here N is the twist coeffi-
cient given by:

N =


2, A(2)

2r−1,D
(2)
r ,E(2)

6 ,

3, D(3)
4 ,

4, A(2)
2r .

(6)

From the aspect of geometry, the modular ansatz for N-section Calabi-Yau three-
folds has been proposed in [14], see also [15]. Combining together, we propose the
following modular ansatz for the reduced twisted one-string elliptic genus:

Ered
1 (τ,ε+) =

N (τ,ε+)

η(τ)12(n−2)−4+24δn,1∆2N(
τ

N )
sφ−2,1(τ,2ε+)

h∨
G̊
−1

, (7)

where
s =

N
N−1

(
c− n−2

2
−δn,1

)
. (8)

Here c is the constant given in Table 1. The numerator N (τ,ε+) is a Jacobi form of
weight 6(n−2)+2Ns+12δn,1−2h∨

G̊
and index 4(h∨

G̊
−1)+n−h∨G and

N (Nτ,ε+) ∈M∗(N)[φ−2,1(Nτ,ε+),φ0,1(Nτ,ε+)]. (9)

Here M∗(N) is the ring of holomorphic modular forms of Γ1(N). Besides, the ∆2N
are some cusp forms on Γ0(N):

∆4(τ) =
η(2τ)16

η(τ)8 , ∆6(τ) =
η(3τ)18

η(τ)6 , ∆8(τ) =
η(2τ)8η(4τ)16

η(τ)8 ,

and φ−2,1(τ,z),φ0,1(τ,z) are Eichler-Zagier’s generators for weak Jacobi forms. We
successfully fix the numerator for all theories in Table 1, check them against the
elliptic genera solved from blowup equations and find perfect agreements.

4 Spectral Flow Symmetry

Spectral flow is a characteristic feature of 2d N = 2 SCFTs. The spectral flow
for reduced one-string elliptic genera associated to 6d (1,0) SCFTs was studied
in [16, 13]. Such flow relates the R-R elliptic genera we have discussed and the
NS-R elliptic genera. For the reduced twisted one-string elliptic genera, we find
the spectral flow from the R-R sector to NS-R sector is induced by the following
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transformation:

ER̊KK
NS−R

(
q,v
)
=±

(q1/4

v

)n−h∨GER̊KK
R−R

(
q,

q1/2

v

)
. (10)

Here q= e2πiτ ,v= e2πiε+ . On the other hand, the spectral flow shifts the KK charges
of hypermultiplets by half. For 6d (1,0) pure gauge G(n) theories, the above two
transformations imply the following spectral flow symmetry for the reduced twisted
one-string elliptic genera:

EG(n)

1

(
q,

q1/2

v

)
=
(
− q1/2

v2

)n−3
EG(n)

1 (q,v). (11)

We have explicitly checked this symmetry for A(2)
2 ,D(2)

4 ,D(3)
4 ,E(2)

6 theories.
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