A problem about virtual polytopes

Jidong Wang

Abstract This is a short summary on the problem of finding canonical representatives for elements in the Grothendieck group of polytopes.

1 Background

Let \mathscr{K} be the set of polytopes in \mathbb{R}^d . Recall that \mathscr{K} is equipped with the following two operations. For $P, Q \in \mathscr{K}, \lambda \ge 0$

Minkowski addition: $P + Q = \{x + y \mid x \in P, y \in Q\}$ scalar multiplication: $\lambda P = \{\lambda x \mid x \in P\}$

The Minkowski addition turns \mathscr{K} into a semigroup, with the identity element $\{0\}$. The semigroup $(\mathscr{K}, +)$ satisfies the following *cancellation property*. For $P, Q, R \in \mathscr{K}$

$$P + R = Q + R \Leftrightarrow P = Q$$

This allows us to construct the *Grothendieck group* of \mathcal{K} . Concretely, let $\mathscr{P} = \mathcal{K} \times \mathcal{K} / \sim$, where

$$(P_1, Q_1) \sim (P_2, Q_2)$$
 if and only if $P_1 + Q_2 = P_2 + Q_1$

The additive structure on \mathscr{P} is given by $(P_1, Q_1) + (P_2, Q_2) = (P_1 + Q_1, P_2 + Q_2)$. There is a the canonical embedding

$$\mathscr{K} \hookrightarrow \mathscr{P}, P \mapsto (P, \{0\})$$

Jidong Wang

University of Texas at Austin, 2515 Speedway, Austin, Texas, 78712, United States, e-mail: ji-dongw@utexas.edu

In other words, there is a canonical way to make sense of "Minkowski subtraction" in \mathcal{K} , and we can also write the equivalence class represented by (P,Q) as P-Q.

This construction seems to be known already in the early 20th century, first officially appearing in [7]. Elements in \mathcal{P} are called *virtual polytopes* by Pukhlikov and Khovanskii [6]. It appears in McMullen's work on the polytope algebra [3]. Recently it also attracts attention from topologists in the context of Thurston norm [1]. For the history of virtual polytopes, see [5].

If one thinks of polytopes as they are, this construction seems a little bit surprising. However, it is very natural from a convex geometric perspective, since a convex body *P* is determined by its support function h_P and $h_{P+Q} = h_P + h_Q$. Clearly, one can subtract two functions. The difference of two functions is a function, but the difference of two convex bodies is an equivalence class. The natural question is, can we find a canonical representative for that equivalence class?

2 Question statement

The word "canonical" can mean different things. One natural way to construct canonical representatives is to define some minimality condition, as is shown in the following example.

Example 1. The nonzero rational numbers \mathbb{Q}^{\times} are the Grothendieck group of the nonzero integers, with respect to its multiplicative structure. Each class in \mathbb{Q}^{\times} has a canonical representative (up to multiplication by a unit) whose numerator and denominator both have the smallest absolute value. Since the integers have unique factorization, $\frac{a}{b}$ is a canonical representative when *a* and *b* are coprime. A more interesting example is the ring of quadratic integers $\mathbb{Z}[\sqrt{-5}]$. Unlike \mathbb{Z} , $\mathbb{Z}[\sqrt{-5}]$ doesn't have unique factorization. Let *R* be its Grothendieck group of the nonzero elements. An element in *R* may have two representatives $\frac{a_1}{b_1}$ and $\frac{a_2}{b_2}$ such that a_1 and b_1 are coprime, a_2 and b_2 are coprime, but a_1 and a_2 are not multiples of each other. For instance,

$$2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \Rightarrow \frac{2}{1 - \sqrt{-5}} = \frac{1 + \sqrt{-5}}{3}$$

However, since $\mathbb{Z}[-5] \subset \mathbb{C}$, each element in *R* has a canonical representative up to a unit whose numerator and denominator both have the smallest modulus.

Question of such flavor first appeared in the context of quasidifferential calculus [4]. Lately, it was considered by Tran and the first author in the context of finding minimal representation of piecewise linear functions [9]. In summary, there are several ways to define what "minimal" means. They can be put into the following framework. Let (S, \prec) be an partially ordered set and $f : \mathcal{K} \to S$ be a map. For two representatives of the same class $P_1 - Q_1 = P_2 - Q_2$, we say

$$P_1 - Q_1 \prec P_2 - Q_2$$
 if $f(P_1) \prec f(P_2)$ and $f(Q_1) \prec f(Q_2)$

A problem about virtual polytopes

- Take S to be *K*, f to be the identity map, and ≺ to be inclusion, one gets the minimality condition defined by Pallaschke and Urbanski [4]. We call this *strong minimality*. It was shown that strongly minimal representatives are unique for d = 2, but not for higher dimensions. [2, 8]
- Take *S* to be the real numbers, *f* to be the *d*-dimensional volume, and ≺ to be the usual ≤, we get a minimality condition that minimizes the volume. We call this *volume minimality*. Volume-minimal representatives are unique when *d* = 2 (this is a consequence of the uniqueness of strongly minimal representatives, although direct elementary proofs can be found). The answer is unknown for higher dimensions.

This minimality condition resembles Example 1 most. It is probably the most intriguing one since the volume function extends to virtual polytopes, and there is a strong connection with algebraic geometry where the (mixed) volume of convex bodies correspond to intersections of divisors. To our knowledge, this notion of minimality hasn't appeared in any literature.

Take S to be N^{d+1}, f to be the map extracting the f-vectors, and ≺ to be the product order induced by ≤ on N^{d+1}, one gets a minimality condition that minimizes the combinatorial complexity, so we may call this *combinatorial minimality*. A version of this where f extracts only the vertices is considered in [9]. Note that this only makes sense for polytopes, while the above two minimality conditions apply for all compact convex bodies.

Question 1. In any of the above minimality criteria, what does the space of all minimal representatives look like?

References

- 1. Funke, F.: The integral polytope group. Advances in Geometry, **21**(1), 45-62 (2021)
- Grzybowski, J.: Minimal pairs of convex compact sets. Archiv der Mathematik, 63, 173-181 (1994)
- 3. McMullen, P.: The polytope algebra. Advances in Mathematics, 78(1), 76-130 (1989)
- Pallaschke, D., Urbanski, R.: Minimal pairs of compact convex sets, with application to quasidifferential calculus. Nonconvex Optimization and Its Applications, 43, 173-214 (2000)
- Panina, G. Y., Streinu, I.: Virtual polytopes. Russian Mathematical Surveys, 70(6), 1105-1165 (2015)
- Pukhlikov, A. V., Khovanskii, A. G.: Finitely additive measures of virtual polytopes. St. Petersburg Math. J, 4(2), 337-356 (1993)
- Rådström, H.: An embedding theorem for spaces of convex sets. Proceedings of the American mathematical society, 3(1), 165-169 (1952)
- Scholtes, S.: Minimal pairs of convex bodies in two dimensions. Mathematika, **39(2)**, 267-273 (1992)
- Tran, N. M., Wang, J.: Minimal Representations of Tropical Rational Functions. (2022) arXiv preprint arXiv:2205.05647.