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What we will do

® MathPhysics motivation
®* Monge—Ampere metrics
* Affine spheres

® Parabolic Higgs bundles, self-duality equations, and surface
group representations

* A little Diophantine geometry

® (Calabi-Yau 3-folds fibered by special Lagrangian 3-tori
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MathPhysics

Space-time
R*x X, X = Calabi-Yau 3-fold: Ricci flat Kahler, Kx = C

String duality predicts mirror C-Y pairs (X, X)

A-model in R4 XX > B-modelin ]RA' x X

Brane (endpoints of open strings) duality

A-branes in X <« B-branesin X



A-brane (S, L) interacts with the symplectic geometry of X:
® S C X special Lagrangian:

Ww|s = 0 = Re Q|5
w € Q°(X,R) Kihler form, Q € H°(Kx) holomorphic volume
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A-brane (S, L) interacts with the symplectic geometry of X:
® S C X special Lagrangian:

Ww|s = 0= ReQ|5

w € Q°(X,R) Kihler form, Q € H°(Kx) holomorphic volume
form.
® [ - S flat unitary line bundle.

B-brane (S, L) interacts with the holomorphic geometry of X:
e ScX complex submanifold,
e [ - S holomorphic line bundle.

Brane duality suggests:
1. ({p},C)— (S, L), thus X swept out by sLags S C X.

2. Space of sLags has tangent space Hl(S,]R).
3. Space of flat unitary line bundles is Hom(H(S, Z), S*).

6 = dimg X = 2dim H'(S,R) ~ by(S)=3 ~» S=T°
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Strominger—Yau—Zaslow conjecture (1996)

1. Calabi-Yau mirror pair (X, X) admits sLag 3-torus fibrations

X X
By

over 3-dimp base By.

2. The fibers 7T_1(b) and 7VT_1(b) are dual tori (“mirror symmetry
is T-duality”).

3. Bg=BuUTl with I' C By a trivalent graph (singularity locus)
over which the fibrations degenerate.



Flat special affine structures and Monge—Ampére metrics



Flat special affine structures and Monge—Ampere metrics

m: X = By sLag fibration of C-Y 3-fold, I C By singularity locus,
and B = By \ I smooth locus.



Flat special affine structures and Monge—Ampere metrics

m: X = By sLag fibration of C-Y 3-fold, I C By singularity locus,
and B = By \ I smooth locus.

® Fiber monodromy p:m(B) = SL3(Z) ~ integral flat special
affine structure (V, detg) on B:

detg € Q3(B,R), V flat, integral monodromy, Vdetg =0.



Flat special affine structures and Monge—Ampere metrics

m: X = By sLag fibration of C-Y 3-fold, I C By singularity locus,
and B = By \ I smooth locus.

® Fiber monodromy p:m(B) = SL3(Z) ~ integral flat special
affine structure (V, detg) on B:

detg € Q3(B,R), V flat, integral monodromy, Vdetg =0.

* Xig = TB/A with A C TB full rank V-parallel lattice bundle.



Flat special affine structures and Monge—Ampere metrics

m: X = By sLag fibration of C-Y 3-fold, I C By singularity locus,
and B = By \ I smooth locus.

® Fiber monodromy p:m(B) = SL3(Z) ~ integral flat special
affine structure (V, detg) on B:

detg € Q3(B,R), V flat, integral monodromy, Vdetg =0.

* Xig = TB/A with A C TB full rank V-parallel lattice bundle.

® Calabi—Yau structure on Xg is completely determined by a
Monge—Ampere metric Vd¢ on B for a smooth

o:B->R, detgVdo =1.



® Solutions ¢ to Monge—Ampére equations
detgVdop =1
on (B, V,detg) for dimg B = 3 are hard to come by.
®* Moreover, B = By \ I can have complicated topology and one

wants to control the asymptotics/monodromy along/around
the singular locus I'.



® Solutions ¢ to Monge—Ampére equations
detgVdop =1
on (B, V,detg) for dimg B = 3 are hard to come by.

®* Moreover, B = By \ I can have complicated topology and one
wants to control the asymptotics/monodromy along/around
the singular locus I'.

Blaschke (1923):

® Solutions ¢ of Monge—Ampeére equations are precisely the
graph functions

z = ¢(b)

of parabolic affine spheres over B.

® 3-dimensional parabolic affine spheres can be obtained from
2-dimensional elliptic or hyperbolic affine spheres via coning

(Calabi 1972, Baues—Cortéz 2003).
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Affine hypersurface geometry
f:M" > (R™ det) with extrinsic symmetry group SL,.1(R):

2nd fundamental form d2f: TM x TM - R"™/ TM
non-degenerate.

+ unique affine normal & M - R™? invariant under SL,.,{(R) with

d€§ =0, det(,,—)=det,, g-= df Blaschke metric

Flatness of d are the affine Gauss—Codazzi equations.

Levi-Civita of Blaschke metric
V=vf+g 'oC, C=-1Vgel(TM"®) cubic Pick form

C is g-tracefree.
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Reconstruction and monodromy

(M, g) Riemannian manifold, S € I'(End(TM)), and g-tracefree
C e I_(TM*QS) satisfying affine Gauss—Codazzi equations.

Then the rank n+ 1 bundle V = TM & R with determinant form
dety = det, Adt and connection

VE + g_l oC S
dy =
g dr
Is flat and d\, dety = 0.
On universal cover M have bundle iIsomorphism
(V,dy,dety) = (R™, d, det).

Inclusion TM < R™" is a closed 1-form which integrates to an
affine hypersurface

~ 1
ffM->R™  yf=p,of
equivariant with respect to dy-monodromy representation

p- 7T1(M) - SI-n+1(IR) y
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Affine spheres

Hypersurface f: M - R is (definite) hyperbolic/elliptic/or
parabolic affine sphere iff S=1, § =—/, or § =0, and Blaschke
metric g is positive definite:

H==x10
Y
dy=|V€+g oC HI
g dr
Affine Gauss-Codazzi equations reduce to
R = Hg Al

or, equivalently,
RE=HgAal-g oCArgtoC, VECel(TM*®

Note: parabolic affine spheres, H = 0, carry flat special affine
structure V, affine normal & is constant and have graph
parametrization

f(p)=p+E&p(p), ¢ solves Monge-Ampere equation
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Elliptic/hyperbolic to parabolic affine spheres
For H = +1 have flat connection on V = TM & R over M"

Vv
dy=|V8E+gtoC HI
g dr

Consider the “coning”
B™ = Mx(0,1) > M
Then
F:TB-p 'V, F(v,ud,)=(rv,uH)

Is bundle isomorphism; Vg := F*d\, and detg := F" dety satisfy:

1. Vg is torsion-free, flat, and preserves detg ~ B is flat special
affine manifold.

2. m(B) = w1 (M) and monodromy p of Vg and d\, are the same.
1
3. 0:B->R,  ¢(r)=—H[{(1-Hp™ )i dp, H==l
Is convex, detgVgdo =1 and thus Vgd¢ is a Monge—Ampere
metric on B.
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2-dim affine spheres

Pick form C is g-tracefree ~
C=Q+Q, Qer(K’)
Affine Gauss-Codazzi says rank 3 bundle V = TM & R with

_(7 0), [g7e(Q+Q) &
dv_(o dR)+( g 0

is flat and preserves dety,. We have introduced the (pseudo)

bundle metric h=g & Hdt” on V to separate the h-orthogonal and
self-adjoint parts of dy .

Flatness of dy <= Tzitzéica equation (1907) and holomorphicity

of Q:
2 —4u 2u =
2Ag, Ut 2|Qlg,e  —He" —Ky=0, 0Q=0
g = e2”g0 where gy is a fixed conformal background metric on M.

(Hyperbolic metric gp, u =0, Q = 0 solves for hyperbolic affine
spheres ...)
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Affine spheres to Higgs bundles and self-duality equations

Rewrite (V=TM®R h=g® Hdtz) with flat connection

a7 0)+ g1 o(Q+ Q) g*),

0 dr g 0

using TM® C=K® K and K = K™ via conformal metric g, as
(pseudo) Hermitian bundle

V®C=K_1€BQ€BK, h=g€BHdt2€Bg_1.

Then
d\/=D+<I>+<I>Jr
0 1 0
D=v%eda (V&) q>=(o 0 l)eﬂl’o(sl(V®<C)).
R 0 0

Tzitzéica equation & dy, flat & F° + [©, CDT] =0, 5 d =0
H =1: SUj; self-duality eqns; H = —1: SU5 ; self-duality eqns.
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Inventory

Want to construct C-Y metrics on C-Y 3-folds fibered by special

Lagrangian tori w: X = By degenerating along a trivalent graph
[ C Bo.

Equivalent to constructing Monge-Ampere metrics
Vdo: TBX TB - R, detgVdo =1

on flat special affine real 3-manifold B = By \ ' with integral
monodromy: flat torsion free V, parallel detg € Q3(B,R),

pv :m1(B) = SL3(Z).
Solving Hitchin's self-duality equations on K'e CeK-> M,

) 0 1 0
FP + (0. 0'1=0, d°d=0, o=(0 0 1
Q 0 0
provides, via coning, examples of such B = M x (0, 1) if

d\/=D+<I>+<I>Jr

has integral monodromy.
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The Y-vertex

Base of special Lagrangian fibration m: X = By is By = B Ul with
[ trivalent graph. Simplest such is a vertex star: a Y-vertex.

Y-vertex is obtained by coning a thrice punctured 2-sphere

M = S? \ {p1, P2, p3}. So By = 5% x [0,1) is open 3-ball and

B = M x (0,1) is obtained by removing a Y-vertex from an open
3-ball.

We need to solve the self-duality equations

FP + [0, 0'1=0, §°®=0

equivalently, the Tzitzéica equation, for g = e2”g0 and Q € F(K3)
2 Ag u+2|Q e —He™ +1=0, 8Q=0

over thrice punctured sphere, where gy Is hyperbolic metric.



Loftin-Yau-Zaslow (JDG 2005)

There exists solution u:S” \ {p1, P2, p3} = R of
2 —4u 2u )
2Ag, U+2|Q|ge  —He" +1=0, 0Q=0

for sufficiently small meromorphic cubic differential @ with
quadratic poles at the punctures p, € S% in the elliptic affine
sphere case, H = —1. The metric g = e2“g0 Is asymptotic to a
radially symmetric metric at the punctures.



Loftin-Yau-Zaslow (JDG 2005)

There exists solution u:S” \ {p1, P2, p3} = R of
2 —4u 2u )
2Ag, U+2|Q|ge  —He" +1=0, 0Q=0

for sufficiently small meromorphic cubic differential @ with
quadratic poles at the punctures p, € S% in the elliptic affine
sphere case, H = —1. The metric g = e2“g0 Is asymptotic to a
radially symmetric metric at the punctures.

No information on the monodromy ~ C-Y 3-fold X = TB fibered
by sLag 3-planes, and not 3-tori.



LYZ use “wrong” affine sphere equations:

elliptic affine spheres are SU5 ; self-duality equations, for which the
non-Abelian Hodge correspondence does not hold.

But it does hold for the compact SU; case corresponding to
hyperbolic affine spheres.
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Parabolic non-Abelian Hodge correspondence

M =M\ {pi,...,p,} punctured compact Riemann surface and
D =) pyi the singularity divisor. There are bijections between the
following moduli spaces (Hitchin 1987, Simpson 1990):

1. Degree zero holomorphic vector bundles W = M of rank r
and Higgs fields ® € H°(Ksl(W)O(®)) with nilpotent residues
Res,, ®—the Dolbeault space Mp.

2. “Tame” solutions to the self-duality equations
F° +[0,011=0, §°d=0
on M—the self-duality space Mgy.

3. Representations p:m1(M) - SL,(C)—the Betti space Mpg.

Nilpotency structure of Res, @ is the same as unipotency
structure of monodromy p, € SL,(C) around py.
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Non-Abelian Hodge over the thrice-punctured sphere

Set M=S* M=S" \ {p1, p2, p3} the thrice-punctured sphere,
singularity divisor ® = p; + py + p3.
Want to apply non-Abelian Hodge to our Higgs bundle

0 10
VeC=K '@eCeK->M, &=[0 0 1
Q 0 0
Need to extend (the holomorphically trivial) bundle V ® C to
M = S* with Q € H’(KZ, 0(2D)). This results in the Higgs bundle

0 1 0
W = O(-1)@ 08 0(1), ch:(o 0 I)EHO(KstI(W)O(@))
@ 0 O

010

Respk¢=(0 0 1)€sl(ka).
0 0 0

ng 0(2D) = O(-2)°0(6) = O, so have C-family of such Higgs
bundles (W, ®).
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Non-Abelian Hodge and C-Y metrics

Theorem (S. Heller, Ouyang, - , 2022):

1. The C-family (W, ®¢) parametrizes (real analytically) the
SL3(R) Hitchin component G ¢ Mg for the thrice-punctured

sphere:
(W, ®q) — poimi(M) - SL3(R)

2. The corresponding solutions to the self-duality equations give
a C-family of solutions to the Tzitzéica equation for hyperbolic
affine spheres on the thrice-punctured sphere asymptotic to
the hyperbolic cusp metric at the punctures p, € s%

3. Coning provides a C-family of non-isometric Monge-Ampere
metrics on B, the open 3-ball deleted a Y-vertex, and thus a
C-family of non-isometric C-Y metrics on the sLag fibration

X=1TB-B.



A Diophantine problem



A Diophantine problem

The C-family of C-Y metrics on X|g = TB descends to a sLag
3-torus fibrations TB/A - B =

[ C TB is V-parallel lattice bundle &
pq: (M) > SLs(Z).



A Diophantine problem

The C-family of C-Y metrics on X|g = TB descends to a sLag
3-torus fibrations TB/A - B =

[ C TB is V-parallel lattice bundle &
pq: (M) > SLs(Z).

Need to understand the monodromy of solutions to the Tzitzéica
equation for hyperbolic affine spheres, or equivalently, for which
Higgs bundles (W, ® o) the—via non-Abelian
Hodge—corresponding representation pg Is integral.
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A Diophantine problem cont.
Theorem (S. Heller, Ouyang, - , 2022):

1. The character map

-1
; tr(,O1,102 )
X:Mpg - C7, Xp=| tr(ps p2)

-1 -1
tr(p1p201 P27)

Is a biholomorphism onto the cubic affine variety

F = {414—1O8x+x3—1O8y+21xy+y3—(51—9X-9X+Xy)z+z2 = 0}



A Diophantine problem cont.
Theorem (S. Heller, Ouyang, - , 2022):
1. The character map

-1

; tr(,O1,102 )

X:Mpg = C7, Xp=| tr(p1 p2)
-1 -1
tr(p1p201 P27)

Is a biholomorphism onto the cubic affine variety
F = {414—1O8x+x3—1O8y+21xy+y3—(51—9X-9X+Xy)z+z2 = 0}

2. F(R)=Fn R’ corresponds via X to the real representations in
Mpg and has two connected components: the Hitchin
component and the component of the trivial representation.



A Diophantine problem cont.
Theorem (S. Heller, Ouyang, - , 2022):
1. The character map

-1

; tr(p1,102 )

X:Mpg = C7, Xp=| tr(p1 p2)
-1 -1
tr(p1p201 P27)

Is a biholomorphism onto the cubic affine variety
F = {414—1O8x+x3—108y+21xy+y3—(51—9X-9X+Xy)z+z2 = 0}

2. F(R)=Fn R’ corresponds via X to the real representations in
Mpg and has two connected components: the Hitchin
component and the component of the trivial representation.

3. F(Z) = FnZ> has infinitely many points in each component
which correspond via X to integral representations
p:m1(M) - SL3(Z).



Some

examples

(s, t) x|y | z p1 P2
1 9 0 0 1 -7
(1,3) | | 84| 84 | 256 01 9 0 -1 38
0 0 1 1 0 4
1 11 32\|/0 1 3
(3,20) | [35| 99 | 643||0 97 288|[[0 21 64
0 -32 -95/|\1 -6 -18
1 18 -5 0 1 -1
(£,32)| |93|129327| [0 1 1 2 -1 2
0 0 1 7 -1 -4

At this point, we do not know whether all integer points F(Z) c F
in the character variety give rise to integral representations, nor
can we characterize all integer points.



Theorem (S. Heller, Ouyang, - , 2022): There exists infinitely
many non-isometric Calabi-Yau metrics on sLag 3-torus fibrations

mX=TB/N-> B

where B is an open 3-ball deleted a Y-vertex.



