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What we will do

• MathPhysics motivation

• Monge–Ampère metrics

• A�ne spheres

• Parabolic Higgs bundles, self-duality equations, and surface
group representations

• A little Diophantine geometry

• Calabi-Yau 3-folds fibered by special Lagrangian 3-tori



MathPhysics

Space-time

R4 ✓ X , X = Calabi-Yau 3-fold: Ricci flat Kähler, KX  C

String duality predicts mirror C-Y pairs (X , X̌ )
A-model in R4 ✓ X æ B-model in R4 ✓ X̌

Brane (endpoints of open strings) duality

A-branes in X æ B-branes in X̌
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A-brane (S , L) interacts with the symplectic geometry of X :
• S L X special Lagrangian:

!∂S = 0 = Re⌦∂S
! " ⌦2(X ,R) Kähler form, ⌦ " H0(KX ) holomorphic volume
form.

• L � S flat unitary line bundle.

B-brane (Š , Ľ) interacts with the holomorphic geometry of X̌ :
• Š L X̌ complex submanifold,
• Ľ � Š holomorphic line bundle.

Brane duality suggests:
1. ({p̌},C) ¿ (S , L), thus X swept out by sLags S L X .

2. Space of sLags has tangent space H1(S ,R).
3. Space of flat unitary line bundles is Hom(H1(S ,Z), S1).

6 = dimR X̌ = 2 dimH
1(S ,R) à b1(S) = 3 à S  T

3
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Strominger–Yau–Zaslow conjecture (1996)

1. Calabi–Yau mirror pair (X , X̌ ) admits sLag 3-torus fibrations

X X̌

B0

⇡ ⇡̌

over 3-dimR base B0.

2. The fibers ⇡�1(b) and ⇡̌�1(b) are dual tori (“mirror symmetry
is T-duality”).

3. B0 = B < � with � L B0 a trivalent graph (singularity locus)
over which the fibrations degenerate.
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Flat special a�ne structures and Monge–Ampère metrics

⇡ ⇥X � B0 sLag fibration of C-Y 3-fold, � L B0 singularity locus,
and B = B0 \ � smooth locus.

• Fiber monodromy ⇢ ⇥⇡1(B) � SL3(Z) à integral flat special
a�ne structure ( , detB ) on B :

detB " ⌦
3(B ,R) ,   flat, integral monodromy ,  detB = 0.

• X∂B = TB/⇤ with ⇤ L TB full rank  -parallel lattice bundle.

• Calabi–Yau structure on X∂B is completely determined by a
Monge–Ampère metric  d� on B for a smooth

� ⇥B � R , detB d� = 1 .
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• Solutions � to Monge–Ampère equations

detB d� = 1

on (B , , detB ) for dimR B ' 3 are hard to come by.

• Moreover, B = B0 \ � can have complicated topology and one
wants to control the asymptotics/monodromy along/around
the singular locus �.

Blaschke (1923):

• Solutions � of Monge–Ampère equations are precisely the
graph functions

z = �(b)
of parabolic a�ne spheres over B .

• 3-dimensional parabolic a�ne spheres can be obtained from
2-dimensional elliptic or hyperbolic a�ne spheres via coning
(Calabi 1972, Baues–Cortéz 2003).



• Solutions � to Monge–Ampère equations

detB d� = 1

on (B , , detB ) for dimR B ' 3 are hard to come by.

• Moreover, B = B0 \ � can have complicated topology and one
wants to control the asymptotics/monodromy along/around
the singular locus �.

Blaschke (1923):

• Solutions � of Monge–Ampère equations are precisely the
graph functions

z = �(b)
of parabolic a�ne spheres over B .

• 3-dimensional parabolic a�ne spheres can be obtained from
2-dimensional elliptic or hyperbolic a�ne spheres via coning
(Calabi 1972, Baues–Cortéz 2003).



A�ne hypersurface geometry

f ⇥Mn � (Rn+1, det) with extrinsic symmetry group SLn+1(R):
2nd fundamental form d2f ⇥TM ✓ TM � Rn+1/TM
non-degenerate.

± unique a�ne normal ⇠⇥M � Rn+1 invariant under SLn+1(R) with
Rn+1 = TM h R⇠ , d = ⇧  S

g d⇠↵
d
⇠
⇠ = 0 , det(⇠,�) = detg , g = d2f Blaschke metric

Flatness of d are the a�ne Gauss–Codazzi equations.

Levi-Civita of Blaschke metric

  =  g + g
�1 ` C , C = �1

2
 g " �(TMòj3) cubic Pick form

C is g -tracefree.
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Reconstruction and monodromy

(M, g ) Riemannian manifold, S " �(End(TM)), and g -tracefree
C " �(TMòj3) satisfying a�ne Gauss–Codazzi equations.

Then the rank n + 1 bundle V = TM h R with determinant form
detV = detg 0dt and connection

dV = ⌅ g + g�1 ` C S
g dR

⌦
is flat and dV detV = 0.

On universal cover M̃ have bundle isomorphism

(V , dV , detV )  (Rn+1
, d , det) .

Inclusion TM̃ 0 Rn+1 is a closed 1-form which integrates to an
a�ne hypersurface

f ⇥ M̃ � Rn+1
, �

ò
f = ⇢� ` f

equivariant with respect to dV -monodromy representation

⇢⇥⇡1(M) � SLn+1(R) .
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A�ne spheres

Hypersurface f ⇥M � Rn+1 is (definite) hyperbolic/elliptic/or
parabolic a�ne sphere i↵ S = I , S = �I , or S = 0, and Blaschke
metric g is positive definite:
H = ±1, 0

dV =
�⇣⇣�

 Ã““““““““““““““““““““““““““““““““““““““–““““““““““““““““““““““““““““““““““““““Œ
 g + g�1 ` C HI

g dR

�⌘⌘✏
A�ne Gauss-Codazzi equations reduce to

R
  = Hg 0 I

or, equivalently,

R
g = Hg 0 I � g

�1 ` C 0 g
�1 ` C ,  g

C " �(TMòj4)
Note: parabolic a�ne spheres, H = 0, carry flat special a�ne
structure  , a�ne normal ⇠ is constant and have graph
parametrization

f (p) = p + ⇠�(p) , � solves Monge-Ampère equation



A�ne spheres

Hypersurface f ⇥M � Rn+1 is (definite) hyperbolic/elliptic/or
parabolic a�ne sphere i↵ S = I , S = �I , or S = 0, and Blaschke
metric g is positive definite:

H = ±1, 0

dV =
�⇣⇣�

 Ã““““““““““““““““““““““““““““““““““““““–““““““““““““““““““““““““““““““““““““““Œ
 g + g�1 ` C HI

g dR

�⌘⌘✏
A�ne Gauss-Codazzi equations reduce to

R
  = Hg 0 I

or, equivalently,

R
g = Hg 0 I � g

�1 ` C 0 g
�1 ` C ,  g

C " �(TMòj4)
Note: parabolic a�ne spheres, H = 0, carry flat special a�ne
structure  , a�ne normal ⇠ is constant and have graph
parametrization

f (p) = p + ⇠�(p) , � solves Monge-Ampère equation



A�ne spheres

Hypersurface f ⇥M � Rn+1 is (definite) hyperbolic/elliptic/or
parabolic a�ne sphere i↵ S = I , S = �I , or S = 0, and Blaschke
metric g is positive definite:
H = ±1, 0

dV =
�⇣⇣�

 Ã““““““““““““““““““““““““““““““““““““““–““““““““““““““““““““““““““““““““““““““Œ
 g + g�1 ` C HI

g dR

�⌘⌘✏
A�ne Gauss-Codazzi equations reduce to

R
  = Hg 0 I

or, equivalently,

R
g = Hg 0 I � g

�1 ` C 0 g
�1 ` C ,  g

C " �(TMòj4)
Note: parabolic a�ne spheres, H = 0, carry flat special a�ne
structure  , a�ne normal ⇠ is constant and have graph
parametrization

f (p) = p + ⇠�(p) , � solves Monge-Ampère equation



A�ne spheres

Hypersurface f ⇥M � Rn+1 is (definite) hyperbolic/elliptic/or
parabolic a�ne sphere i↵ S = I , S = �I , or S = 0, and Blaschke
metric g is positive definite:
H = ±1, 0

dV =
�⇣⇣�

 Ã““““““““““““““““““““““““““““““““““““““–““““““““““““““““““““““““““““““““““““““Œ
 g + g�1 ` C HI

g dR

�⌘⌘✏
A�ne Gauss-Codazzi equations reduce to

R
  = Hg 0 I

or, equivalently,

R
g = Hg 0 I � g

�1 ` C 0 g
�1 ` C ,  g

C " �(TMòj4)

Note: parabolic a�ne spheres, H = 0, carry flat special a�ne
structure  , a�ne normal ⇠ is constant and have graph
parametrization

f (p) = p + ⇠�(p) , � solves Monge-Ampère equation



A�ne spheres

Hypersurface f ⇥M � Rn+1 is (definite) hyperbolic/elliptic/or
parabolic a�ne sphere i↵ S = I , S = �I , or S = 0, and Blaschke
metric g is positive definite:
H = ±1, 0

dV =
�⇣⇣�

 Ã““““““““““““““““““““““““““““““““““““““–““““““““““““““““““““““““““““““““““““““Œ
 g + g�1 ` C HI

g dR

�⌘⌘✏
A�ne Gauss-Codazzi equations reduce to

R
  = Hg 0 I

or, equivalently,

R
g = Hg 0 I � g

�1 ` C 0 g
�1 ` C ,  g

C " �(TMòj4)
Note: parabolic a�ne spheres, H = 0, carry flat special a�ne
structure  , a�ne normal ⇠ is constant and have graph
parametrization

f (p) = p + ⇠�(p) , � solves Monge-Ampère equation



Elliptic/hyperbolic to parabolic a�ne spheres

For H = ±1 have flat connection on V = TM h R over Mn

dV =
�⇣⇣�

 Ã““““““““““““““““““““““““““““““““““““““–““““““““““““““““““““““““““““““““““““““Œ
 g + g�1 ` C HI

g dR

�⌘⌘✏
Consider the “coning”

B
n+1 = M ✓ (0, 1) p

�� M

Then
F ⇥TB � p

ò
V , F (v , µ@r ) = (rv , µH)

is bundle isomorphism;  B ⇥= F òdV and detB ⇥= F ò detV satisfy:
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2-dim a�ne spheres

Pick form C is g-tracefree à

C = Q + Q̄ , Q " �(K 3)
A�ne Gauss-Codazzi says rank 3 bundle V = TM h R with

dV = ⌅ g 0
0 dR

⌦ + ⇧g�1 ` (Q + Q̄) g †

g 0
↵

is flat and preserves detV . We have introduced the (pseudo)

bundle metric h = g h Hdt2 on V to separate the h-orthogonal and
self-adjoint parts of dV .

Flatness of dV ø Tzitzéica equation (1907) and holomorphicity
of Q:

2Wg0 u + 2∂Q∂2g0e�4u � He
2u � K0 = 0 , @̄ Q = 0

g = e2ug0 where g0 is a fixed conformal background metric on M.

(Hyperbolic metric g0, u � 0, Q � 0 solves for hyperbolic a�ne
spheres ...)
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A�ne spheres to Higgs bundles and self-duality equations

Rewrite (V = TM h R, h = g h Hdt2) with flat connection

dV = ⌅ g 0
0 dR

⌦ + ⇧g�1 ` (Q + Q̄) g †

g 0
↵ ,

using TM i C = K h K̄ and K̄  K�1 via conformal metric g , as
(pseudo) Hermitian bundle

V i C = K
�1 h C h K , h = g h Hdt

2 h g
�1

.

Then
dV = D + � + �

†

D =  g h d h ( g )ò , � =
�⇣⇣�
0 1 0
0 0 1
Q 0 0

�⌘⌘✏ " ⌦
1,0(sl(V i C)).

Tzitzéica equation  dV flat  F
D + [�,�†] = 0 , @̄

D
� = 0

H = 1: SU3 self-duality eqns; H = �1: SU2,1 self-duality eqns.
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Inventory

Want to construct C-Y metrics on C-Y 3-folds fibered by special
Lagrangian tori ⇡ ⇥X � B0 degenerating along a trivalent graph
� L B0.

Equivalent to constructing Monge-Ampère metrics

 d� ⇥TB ✓ TB � R , detB d� = 1

on flat special a�ne real 3-manifold B = B0 \ � with integral
monodromy: flat torsion free  , parallel detB " ⌦3(B ,R),
⇢  ⇥⇡1(B) � SL3(Z).
Solving Hitchin’s self-duality equations on K�1 h C h K � M,

F
D + [�,�†] = 0 , @̄

D
� = 0 , � =

�⇣⇣�
0 1 0
0 0 1
Q 0 0

�⌘⌘✏
provides, via coning, examples of such B = M ✓ (0, 1) if

dV = D + � + �
†

has integral monodromy.
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The Y-vertex

Base of special Lagrangian fibration ⇡ ⇥X � B0 is B0 = B < � with
� trivalent graph. Simplest such is a vertex star: a Y-vertex.

Y-vertex is obtained by coning a thrice punctured 2-sphere
M = S2 \ {p1, p2, p3}. So B0 = S2 ✓ [0, 1) is open 3-ball and
B = M ✓ (0, 1) is obtained by removing a Y-vertex from an open
3-ball.

We need to solve the self-duality equations

F
D + [�,�†] = 0 , @̄

D
� = 0

equivalently, the Tzitzéica equation, for g = e2ug0 and Q " �(K 3)
2Wg0 u + 2∂Q∂2g0e�4u � He

2u + 1 = 0 , @̄ Q = 0

over thrice punctured sphere, where g0 is hyperbolic metric.
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Loftin-Yau-Zaslow (JDG 2005)

There exists solution u ⇥ S2 \ {p1, p2, p3} � R of

2Wg0 u + 2∂Q∂2g0e�4u � He
2u + 1 = 0 , @̄ Q = 0

for su�ciently small meromorphic cubic di↵erential Q with
quadratic poles at the punctures pk " S2 in the elliptic a�ne
sphere case, H = �1. The metric g = e2ug0 is asymptotic to a
radially symmetric metric at the punctures.

No information on the monodromy à C-Y 3-fold X = TB fibered
by sLag 3-planes, and not 3-tori.
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LYZ use “wrong” a�ne sphere equations:
elliptic a�ne spheres are SU2,1 self-duality equations, for which the
non-Abelian Hodge correspondence does not hold.
But it does hold for the compact SU3 case corresponding to
hyperbolic a�ne spheres.



Parabolic non-Abelian Hodge correspondence

M = M̄ \ {p1, . . . , pn} punctured compact Riemann surface and
D = 8 pk the singularity divisor. There are bijections between the
following moduli spaces (Hitchin 1987, Simpson 1990):

1. Degree zero holomorphic vector bundles W � M̄ of rank r
and Higgs fields � " H0(Ksl(W )O(D)) with nilpotent residues
Respk �—the Dolbeault space MD .

2. “Tame” solutions to the self-duality equations

F
D + [�,�†] = 0 , @̄

D
� = 0

on M—the self-duality space Msd .

3. Representations ⇢ ⇥⇡1(M) � SLr (C)—the Betti space MB .

Nilpotency structure of Respk � is the same as unipotency
structure of monodromy ⇢k " SLr (C) around pk .
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F
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on M—the self-duality space Msd .
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Non-Abelian Hodge over the thrice-punctured sphere

Set M̄ = S2, M = S2 \ {p1, p2, p3} the thrice-punctured sphere,
singularity divisor D = p1 + p2 + p3.
Want to apply non-Abelian Hodge to our Higgs bundle

V i C = K
�1 h C h K � M , � =

�⇣⇣�
0 1 0
0 0 1
Q 0 0

�⌘⌘✏
Need to extend (the holomorphically trivial) bundle V i C to

M̄ = S2 with Q " H0(K 3
S2O(2D)). This results in the Higgs bundle

W = O(�1)hOhO(1) , �Q =
�⇣⇣�
0 1 0
0 0 1
Q 0 0

�⌘⌘✏ " H
0(KS2sl(W )O(D))

Respk � =
�⇣⇣�
0 1 0
0 0 1
0 0 0

�⌘⌘✏ " sl(Wpk ) .
K 3
S2O(2D) = O(�2)3O(6) = O, so have C-family of such Higgs

bundles (W ,�Q ).
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Non-Abelian Hodge and C-Y metrics

Theorem (S. Heller, Ouyang, - , 2022):

1. The C-family (W ,�Q ) parametrizes (real analytically) the
SL3(R) Hitchin component C L MB for the thrice-punctured
sphere: (W ,�Q ) ¿ ⇢Q ⇥⇡1(M) � SL3(R)

2. The corresponding solutions to the self-duality equations give
a C-family of solutions to the Tzitzéica equation for hyperbolic
a�ne spheres on the thrice-punctured sphere asymptotic to
the hyperbolic cusp metric at the punctures pk " S2.

3. Coning provides a C-family of non-isometric Monge-Ampère
metrics on B , the open 3-ball deleted a Y-vertex, and thus a
C-family of non-isometric C-Y metrics on the sLag fibration
X = TB � B .
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A Diophantine problem

The C-family of C-Y metrics on X∂B = TB descends to a sLag
3-torus fibrations TB/⇤ � B ø

� L TB is  -parallel lattice bundle ø

⇢Q ⇥⇡1(M) � SL3(Z).
Need to understand the monodromy of solutions to the Tzitzéica
equation for hyperbolic a�ne spheres, or equivalently, for which
Higgs bundles (W ,�Q ) the—via non-Abelian
Hodge—corresponding representation ⇢Q is integral.
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A Diophantine problem cont.

Theorem (S. Heller, Ouyang, - , 2022):

1. The character map

X⇥MB � C3
, X⇢ =

�⇣⇣⇣�
tr(⇢1⇢�12 )
tr(⇢�11 ⇢2)

tr(⇢1⇢2⇢�11 ⇢�12 )
�⌘⌘⌘✏

is a biholomorphism onto the cubic a�ne variety

F = {414�108x+x3�108y+21xy+y3�(51�9x�9x+xy )z+z2 = 0}
2. F(R) = F =R3 corresponds via X to the real representations in

MB and has two connected components: the Hitchin
component and the component of the trivial representation.

3. F(Z) = F = Z3 has infinitely many points in each component
which correspond via X to integral representations
⇢⇥⇡1(M) � SL3(Z).
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Some examples

(s, t) x y z ⇢1 ⇢2

(1, 3) 84 84 256
�⇣⇣�
1 9 0
0 1 9
0 0 1

�⌘⌘✏
�⇣⇣�
0 1 �7
0 �1 8
1 0 4

�⌘⌘✏
(3, 20) 35 99 643

�⇣⇣�
1 11 32
0 97 288
0 �32 �95

�⌘⌘✏
�⇣⇣�
0 1 3
0 21 64
1 �6 �18

�⌘⌘✏
(7
5
, 18

5
) 93 129 327

�⇣⇣�
1 18 �5
0 1 1
0 0 1

�⌘⌘✏
�⇣⇣�
0 1 �1
2 �1 2
7 �1 �4

�⌘⌘✏
At this point, we do not know whether all integer points F(Z) L F

in the character variety give rise to integral representations, nor
can we characterize all integer points.



Theorem (S. Heller, Ouyang, - , 2022): There exists infinitely
many non-isometric Calabi-Yau metrics on sLag 3-torus fibrations

⇡⇥X = TB/⇤ � B

where B is an open 3-ball deleted a Y-vertex.


