Higgs bundles and SYZ geometry

Franz Pedit, UMass Amherst
(Joint with Sebastian Heller and Charles Ouyang)
http://arxiv.org/abs/2203.04224

MATRIX workshop
Spectrum and Symmetry for Group Actions in Geometry
July 24-August 4, 2023

What we will do

- MathPhysics motivation
- Monge-Ampère metrics
- Affine spheres
- Parabolic Higgs bundles, self-duality equations, and surface group representations
- A little Diophantine geometry
- Calabi-Yau 3-folds fibered by special Lagrangian 3-tori

MathPhysics

Space-time

$$
\mathbb{R}^{4} \times X, \quad X=\text { Calabi-Yau 3-fold: Ricci flat Kähler, } K_{X} \cong \mathbb{C}
$$

MathPhysics

Space-time

$$
\mathbb{R}^{4} \times X, \quad X=\text { Calabi-Yau 3-fold: Ricci flat Kähler, } K_{X} \cong \mathbb{C}
$$

String duality predicts mirror $\mathrm{C}-\mathrm{Y}$ pairs (X, \check{X})

$$
\text { A-model in } \mathbb{R}^{4} \times X \quad \longleftrightarrow \quad \text { B-model in } \mathbb{R}^{4} \times \check{X}
$$

MathPhysics

Space-time
$\mathbb{R}^{4} \times X, \quad X=$ Calabi-Yau 3-fold: Ricci flat Kähler, $K_{X} \cong \underline{\mathbb{C}}$
String duality predicts mirror $\mathrm{C}-\mathrm{Y}$ pairs (X, \check{X})

$$
\text { A-model in } \mathbb{R}^{4} \times X \quad \longleftrightarrow \quad \text { B-model in } \mathbb{R}^{4} \times \check{X}
$$

Brane (endpoints of open strings) duality

$$
\text { A-branes in } X \quad \longleftrightarrow \text { B-branes in } \check{X}
$$

A-brane (S, L) interacts with the symplectic geometry of X :

- $S \subset X$ special Lagrangian:

$$
\omega_{\mid S}=0=\operatorname{Re} \Omega_{\mid S}
$$

$\omega \in \Omega^{2}(X, \mathbb{R})$ Kähler form, $\Omega \in H^{0}\left(K_{X}\right)$ holomorphic volume form.

- $L \rightarrow S$ flat unitary line bundle.

A-brane (S, L) interacts with the symplectic geometry of X :

- $S \subset X$ special Lagrangian:

$$
\omega_{\mid S}=0=\operatorname{Re} \Omega_{\mid S}
$$

$\omega \in \Omega^{2}(X, \mathbb{R})$ Kähler form, $\Omega \in H^{0}\left(K_{X}\right)$ holomorphic volume form.

- $L \rightarrow S$ flat unitary line bundle.

B-brane (\check{S}, \check{L}) interacts with the holomorphic geometry of \check{X} :

- Š $\subset ~ \check{X}$ complex submanifold,
- $\check{L} \rightarrow \check{S}$ holomorphic line bundle.

A-brane (S, L) interacts with the symplectic geometry of X :

- $S \subset X$ special Lagrangian:

$$
\omega_{\mid S}=0=\operatorname{Re} \Omega_{\mid S}
$$

$\omega \in \Omega^{2}(X, \mathbb{R})$ Kähler form, $\Omega \in H^{0}\left(K_{X}\right)$ holomorphic volume form.

- $L \rightarrow S$ flat unitary line bundle.

B-brane (\check{S}, \check{L}) interacts with the holomorphic geometry of \check{X} :

- Š $\subset ~ \check{X}$ complex submanifold,
- $\check{L} \rightarrow S$ holomorphic line bundle.

Brane duality suggests:

1. $(\{\check{p}\}, \mathbb{C}) \longmapsto(S, L)$, thus X swept out by sLags $S \subset X$.
2. Space of sLags has tangent space $H^{1}(S, \mathbb{R})$.
3. Space of flat unitary line bundles is $\operatorname{Hom}\left(H_{1}(S, \mathbb{Z}), S^{1}\right)$.

A-brane (S, L) interacts with the symplectic geometry of X :

- $S \subset X$ special Lagrangian:

$$
\omega_{\mid S}=0=\operatorname{Re} \Omega_{\mid S}
$$

$\omega \in \Omega^{2}(X, \mathbb{R})$ Kähler form, $\Omega \in H^{0}\left(K_{X}\right)$ holomorphic volume form.

- $L \rightarrow S$ flat unitary line bundle.

B-brane (\check{S}, \check{L}) interacts with the holomorphic geometry of \check{X} :

- Š $\subset \check{X}$ complex submanifold,
- $\check{L} \rightarrow$ Š holomorphic line bundle.

Brane duality suggests:

1. $(\{\check{p}\}, \mathbb{C}) \longmapsto(S, L)$, thus X swept out by sLags $S \subset X$.
2. Space of sLags has tangent space $H^{1}(S, \mathbb{R})$.
3. Space of flat unitary line bundles is $\operatorname{Hom}\left(H_{1}(S, \mathbb{Z}), S^{1}\right)$.

$$
6=\operatorname{dim}_{\mathbb{R}} \check{X}=2 \operatorname{dim} H^{1}(S, \mathbb{R}) \leadsto b_{1}(S)=3 \leadsto S \cong T^{3}
$$

Strominger-Yau-Zaslow conjecture (1996)

Strominger-Yau-Zaslow conjecture (1996)

1. Calabi-Yau mirror pair (X, \check{X}) admits sLag 3-torus fibrations

over 3 - dim $_{\mathbb{R}}$ base B_{0}.

Strominger-Yau-Zaslow conjecture (1996)

1. Calabi-Yau mirror pair (X, \check{X}) admits sLag 3-torus fibrations

over $3-\operatorname{dim}_{\mathbb{R}}$ base B_{0}.
2. The fibers $\pi^{-1}(b)$ and $\check{\pi}^{-1}(b)$ are dual tori ("mirror symmetry is T -duality").

Strominger-Yau-Zaslow conjecture (1996)

1. Calabi-Yau mirror pair (X, \check{X}) admits sLag 3-torus fibrations

over 3 - $\operatorname{dim}_{\mathbb{R}}$ base B_{0}.
2. The fibers $\pi^{-1}(b)$ and $\check{\pi}^{-1}(b)$ are dual tori ("mirror symmetry is T-duality").
3. $B_{0}=B \cup \Gamma$ with $\Gamma \subset B_{0}$ a trivalent graph (singularity locus) over which the fibrations degenerate.

Flat special affine structures and Monge-Ampère metrics

Flat special affine structures and Monge-Ampère metrics

 $\pi: X \rightarrow B_{0}$ sLag fibration of $C-Y$ 3-fold, $\Gamma \subset B_{0}$ singularity locus, and $B=B_{0} \backslash \Gamma$ smooth locus.
Flat special affine structures and Monge-Ampère metrics

$\pi: X \rightarrow B_{0}$ sLag fibration of $C-Y$ 3-fold, $\Gamma \subset B_{0}$ singularity locus, and $B=B_{0} \backslash \Gamma$ smooth locus.

- Fiber monodromy $\rho: \pi_{1}(B) \rightarrow \mathbf{S L}_{3}(\mathbb{Z}) \leadsto$ integral flat special affine structure $\left(\nabla, \operatorname{det}_{B}\right)$ on B : $\operatorname{det}_{B} \in \Omega^{3}(B, \mathbb{R}), \quad \nabla$ flat, integral monodromy,$\quad \nabla \operatorname{det}_{B}=0$.

Flat special affine structures and Monge-Ampère metrics

$\pi: X \rightarrow B_{0}$ sLag fibration of C-Y 3-fold, $\Gamma \subset B_{0}$ singularity locus, and $B=B_{0} \backslash \Gamma$ smooth locus.

- Fiber monodromy $\rho: \pi_{1}(B) \rightarrow \mathbf{S L}_{3}(\mathbb{Z}) \leadsto$ integral flat special affine structure $\left(\nabla, \operatorname{det}_{B}\right)$ on B :
$\operatorname{det}_{B} \in \Omega^{3}(B, \mathbb{R}), \quad \nabla$ flat, integral monodromy,$\quad \nabla \operatorname{det}_{B}=0$.
- $X_{\mid B}=T B / \Lambda$ with $\Lambda \subset T B$ full rank ∇-parallel lattice bundle.

Flat special affine structures and Monge-Ampère metrics

$\pi: X \rightarrow B_{0}$ sLag fibration of $C-Y$ 3-fold, $\Gamma \subset B_{0}$ singularity locus, and $B=B_{0} \backslash \Gamma$ smooth locus.

- Fiber monodromy $\rho: \pi_{1}(B) \rightarrow \mathbf{S L}_{3}(\mathbb{Z}) \leadsto$ integral flat special affine structure $\left(\nabla, \operatorname{det}_{B}\right)$ on B :
$\operatorname{det}_{B} \in \Omega^{3}(B, \mathbb{R}), \quad \nabla$ flat, integral monodromy,$\quad \nabla \operatorname{det}_{B}=0$.
- $X_{\mid B}=T B / \Lambda$ with $\Lambda \subset T B$ full rank ∇-parallel lattice bundle.
- Calabi-Yau structure on $X_{\mid B}$ is completely determined by a Monge-Ampère metric $\nabla d \phi$ on B for a smooth

$$
\phi: B \rightarrow \mathbb{R}, \quad \operatorname{det}_{B} \nabla d \phi=1
$$

- Solutions ϕ to Monge-Ampère equations

$$
\operatorname{det}_{B} \nabla d \phi=1
$$

on $\left(B, \nabla, \operatorname{det}_{B}\right)$ for $\operatorname{dim}_{\mathbb{R}} B \geq 3$ are hard to come by.

- Moreover, $B=B_{0} \backslash \Gamma$ can have complicated topology and one wants to control the asymptotics/monodromy along/around the singular locus Γ.
- Solutions ϕ to Monge-Ampère equations

$$
\operatorname{det}_{B} \nabla d \phi=1
$$

on $\left(B, \nabla, \operatorname{det}_{B}\right)$ for $\operatorname{dim}_{\mathbb{R}} B \geq 3$ are hard to come by.

- Moreover, $B=B_{0} \backslash \Gamma$ can have complicated topology and one wants to control the asymptotics/monodromy along/around the singular locus Γ.

Blaschke (1923):

- Solutions ϕ of Monge-Ampère equations are precisely the graph functions

$$
z=\phi(b)
$$

of parabolic affine spheres over B.

- 3-dimensional parabolic affine spheres can be obtained from 2-dimensional elliptic or hyperbolic affine spheres via coning (Calabi 1972, Baues-Cortéz 2003).

Affine hypersurface geometry

Affine hypersurface geometry

$f: M^{n} \rightarrow\left(\mathbb{R}^{n+1}\right.$, det) with extrinsic symmetry group $\mathbf{S L}_{n+1}(\mathbb{R})$:

Affine hypersurface geometry

$f: M^{n} \rightarrow\left(\mathbb{R}^{n+1}\right.$, det) with extrinsic symmetry group $\operatorname{SL}_{n+1}(\mathbb{R}):$
2nd fundamental form $\overline{d^{2} f}: T M \times T M \rightarrow \mathbb{R}^{n+1} / T M$ non-degenerate.

Affine hypersurface geometry

$f: M^{n} \rightarrow\left(\mathbb{R}^{n+1}\right.$, det) with extrinsic symmetry group $\mathbf{S L}_{n+1}(\mathbb{R})$:
2nd fundamental form $\overline{d^{2} f}: T M \times T M \rightarrow \mathbb{R}^{n+1} / T M$ non-degenerate.
\pm unique affine normal $\xi: M \rightarrow \mathbb{R}^{n+1}$ invariant under $\mathbf{S L}_{n+1}(\mathbb{R})$ with

$$
\begin{array}{r}
\underline{\mathbb{R}}^{n+1}=T M \oplus \mathbb{R} \xi, \quad d=\left(\begin{array}{cc}
\nabla & S \\
g & d^{\xi}
\end{array}\right) \\
d^{\xi} \xi=0, \quad \operatorname{det}(\xi,-)=\operatorname{det}_{g}, \quad g=\overline{d^{2} f} \text { Blaschke metric }
\end{array}
$$

Affine hypersurface geometry

$f: M^{n} \rightarrow\left(\mathbb{R}^{n+1}\right.$, det) with extrinsic symmetry group $\mathbf{S L}_{n+1}(\mathbb{R})$:
2nd fundamental form $\overline{d^{2} f}: T M \times T M \rightarrow \mathbb{R}^{n+1} / T M$ non-degenerate.
\pm unique affine normal $\xi: M \rightarrow \mathbb{R}^{n+1}$ invariant under $\mathbf{S L}_{n+1}(\mathbb{R})$ with

$$
\begin{array}{r}
\underline{\mathbb{R}}^{n+1}=T M \oplus \mathbb{R} \xi, \quad d=\left(\begin{array}{cc}
\nabla & S \\
g & d^{\xi}
\end{array}\right) \\
d^{\xi} \xi=0, \quad \operatorname{det}(\xi,-)=\operatorname{det}_{g}, \quad g=\overline{d^{2} f} \text { Blaschke metric }
\end{array}
$$

Flatness of d are the affine Gauss-Codazzi equations.

Affine hypersurface geometry

$f: M^{n} \rightarrow\left(\mathbb{R}^{n+1}\right.$, det) with extrinsic symmetry group $\operatorname{SL}_{n+1}(\mathbb{R})$:
2nd fundamental form $\overline{d^{2} f}: T M \times T M \rightarrow \mathbb{R}^{n+1} / T M$ non-degenerate.
\pm unique affine normal $\xi: M \rightarrow \mathbb{R}^{n+1}$ invariant under $\mathbf{S L}_{n+1}(\mathbb{R})$ with

$$
\begin{array}{r}
\underline{\mathbb{R}}^{n+1}=T M \oplus \mathbb{R} \xi, \quad d=\left(\begin{array}{cc}
\nabla & S \\
g & d^{\xi}
\end{array}\right) \\
d^{\xi} \xi=0, \quad \operatorname{det}(\xi,-)=\operatorname{det}_{g}, \quad g=\overline{d^{2} f} \text { Blaschke metric }
\end{array}
$$

Flatness of d are the affine Gauss-Codazzi equations.
Levi-Civita of Blaschke metric

$$
\nabla=\nabla^{g}+g^{-1} \circ C, \quad C=-\frac{1}{2} \nabla g \in \Gamma\left(T M^{* \odot 3}\right) \text { cubic Pick form }
$$

C is g-tracefree.

Reconstruction and monodromy

Reconstruction and monodromy

(M, g) Riemannian manifold, $S \in \Gamma(E n d(T M)$), and g-tracefree $C \in \Gamma\left(T M^{* \odot 3}\right)$ satisfying affine Gauss-Codazzi equations.

Reconstruction and monodromy

(M, g) Riemannian manifold, $S \in \Gamma(E n d(T M))$, and g-tracefree $C \in \Gamma\left(T M^{* 03}\right)$ satisfying affine Gauss-Codazzi equations.

Then the rank $n+1$ bundle $V=T M \oplus \mathbb{R}$ with determinant form $\operatorname{det}_{V}=\operatorname{det}_{g} \wedge d t$ and connection

$$
d_{V}=\left(\begin{array}{cc}
\nabla^{g}+g^{-1} \circ C & S \\
g & \\
d_{\mathbb{R}}
\end{array}\right)
$$

is flat and $d_{V} \operatorname{det}_{V}=0$.

Reconstruction and monodromy

(M, g) Riemannian manifold, $S \in \Gamma(\operatorname{End}(T M)$), and g-tracefree $C \in \Gamma\left(T M^{* 03}\right)$ satisfying affine Gauss-Codazzi equations.

Then the rank $n+1$ bundle $V=T M \oplus \mathbb{R}$ with determinant form $\operatorname{det}_{V}=\operatorname{det}_{g} \wedge d t$ and connection

$$
d_{V}=\left(\begin{array}{cc}
\nabla^{g}+g^{-1} \circ C & S \\
g & \\
d_{\mathbb{R}}
\end{array}\right)
$$

is flat and $d_{V} \operatorname{det}_{V}=0$.
On universal cover \tilde{M} have bundle isomorphism

$$
\left(V, d_{V}, \operatorname{det}_{V}\right) \cong\left(\mathbb{R}^{n+1}, d, \operatorname{det}\right)
$$

Reconstruction and monodromy

(M, g) Riemannian manifold, $S \in \Gamma(\operatorname{End}(T M))$, and g-tracefree $C \in \Gamma\left(T M^{* \odot 3}\right)$ satisfying affine Gauss-Codazzi equations.

Then the rank $n+1$ bundle $V=T M \oplus \underline{\mathbb{R}}$ with determinant form $\operatorname{det}_{V}=\operatorname{det}_{g} \wedge d t$ and connection

$$
d_{V}=\left(\begin{array}{cc}
\nabla^{g}+g^{-1} \circ C & S \\
g & \\
d_{\mathbb{R}}
\end{array}\right)
$$

is flat and $d_{V} \operatorname{det}_{V}=0$.
On universal cover \tilde{M} have bundle isomorphism

$$
\left(V, d_{V}, \operatorname{det}_{V}\right) \cong\left(\mathbb{R}^{n+1}, d, \operatorname{det}\right)
$$

Inclusion $T \tilde{M} \hookrightarrow \mathbb{R}^{n+1}$ is a closed 1-form which integrates to an affine hypersurface

$$
f: \tilde{M} \rightarrow \mathbb{R}^{n+1}, \quad \gamma^{*} f=\rho_{\gamma} \circ f
$$

equivariant with respect to d_{V}-monodromy representation

$$
\rho: \pi_{1}(M) \rightarrow \mathbf{S L}_{n+1}(\mathbb{R})
$$

Affine spheres

Affine spheres

Hypersurface $f: M \rightarrow \mathbb{R}^{n+1}$ is (definite) hyperbolic/elliptic/or parabolic affine sphere iff $S=l, S=-l$, or $S=0$, and Blaschke metric g is positive definite:

Affine spheres

Hypersurface $f: M \rightarrow \mathbb{R}^{n+1}$ is (definite) hyperbolic/elliptic/or parabolic affine sphere iff $S=l, S=-l$, or $S=0$, and Blaschke metric g is positive definite: $H= \pm 1,0$

$$
d_{V}=\left(\begin{array}{cc}
\overbrace{\nabla^{g}+g^{-1} \circ C} & H I \\
g & d_{\mathbb{R}}
\end{array}\right)
$$

Affine Gauss-Codazzi equations reduce to

$$
R^{\nabla}=H g \wedge I
$$

Affine spheres

Hypersurface $f: M \rightarrow \mathbb{R}^{n+1}$ is (definite) hyperbolic/elliptic/or parabolic affine sphere iff $S=l, S=-l$, or $S=0$, and Blaschke metric g is positive definite: $H= \pm 1,0$

$$
d_{V}=\left(\begin{array}{cc}
\overbrace{\nabla^{g}+g^{-1} \circ C} & H I \\
g & d_{\mathbb{R}}
\end{array}\right)
$$

Affine Gauss-Codazzi equations reduce to

$$
R^{\nabla}=H g \wedge I
$$

or, equivalently,

$$
R^{g}=H g \wedge I-g^{-1} \circ C \wedge g^{-1} \circ C, \quad \nabla^{g} C \in \Gamma\left(T M^{* \odot 4}\right)
$$

Affine spheres

Hypersurface $f: M \rightarrow \mathbb{R}^{n+1}$ is (definite) hyperbolic/elliptic/or parabolic affine sphere iff $S=l, S=-l$, or $S=0$, and Blaschke metric g is positive definite: $H= \pm 1,0$

$$
d_{V}=\left(\begin{array}{cc}
\overbrace{\nabla^{g}+g^{-1} \circ C} & H I \\
g & d_{\mathbb{R}}
\end{array}\right)
$$

Affine Gauss-Codazzi equations reduce to

$$
R^{\nabla}=H g \wedge I
$$

or, equivalently,

$$
R^{g}=H g \wedge I-g^{-1} \circ C \wedge g^{-1} \circ C, \quad \nabla^{g} C \in \Gamma\left(T M^{* \odot 4}\right)
$$

Note: parabolic affine spheres, $H=0$, carry flat special affine structure ∇, affine normal ξ is constant and have graph parametrization

$$
f(p)=p+\xi \phi(p), \quad \phi \text { solves Monge-Ampère equation }
$$

Elliptic/hyperbolic to parabolic affine spheres

Elliptic/hyperbolic to parabolic affine spheres

For $H= \pm 1$ have flat connection on $V=T M \oplus \mathbb{R}$ over M^{n}

$$
d_{V}=\left(\begin{array}{cc}
\overbrace{\nabla^{g}+g^{-1} \circ C} & H I \\
g & d_{\mathbb{R}}
\end{array}\right)
$$

Elliptic/hyperbolic to parabolic affine spheres

For $H= \pm 1$ have flat connection on $V=T M \oplus \mathbb{R}$ over M^{n}

$$
d_{V}=\left(\begin{array}{cc}
\overbrace{\nabla^{g}+g^{-1} \circ C} & H I \\
g & d_{\mathbb{R}}
\end{array}\right)
$$

Consider the "coning"

$$
B^{n+1}=M \times(0,1) \xrightarrow{p} M
$$

Then

$$
F: T B \rightarrow p^{*} V, \quad F\left(v, \mu \partial_{r}\right)=(r v, \mu H)
$$

is bundle isomorphism; $\nabla_{B}:=F^{*} d_{V}$ and $\operatorname{det}_{B}:=F^{*} \operatorname{det}_{V}$ satisfy:

Elliptic/hyperbolic to parabolic affine spheres

For $H= \pm 1$ have flat connection on $V=T M \oplus \mathbb{R}$ over M^{n}

$$
d_{V}=\left(\begin{array}{cc}
\overbrace{\nabla^{g}+g^{-1} \circ C} & H I \\
g & d_{\mathbb{R}}
\end{array}\right)
$$

Consider the "coning"

$$
B^{n+1}=M \times(0,1) \xrightarrow{p} M
$$

Then

$$
F: T B \rightarrow p^{*} V, \quad F\left(v, \mu \partial_{r}\right)=(r v, \mu H)
$$

is bundle isomorphism; $\nabla_{B}:=F^{*} d_{V}$ and $\operatorname{det}_{B}:=F^{*} \operatorname{det}_{V}$ satisfy:

1. ∇_{B} is torsion-free, flat, and preserves $\operatorname{det}_{B} \leadsto B$ is flat special affine manifold.

Elliptic/hyperbolic to parabolic affine spheres

For $H= \pm 1$ have flat connection on $V=T M \oplus \mathbb{R}$ over M^{n}

$$
d_{V}=\left(\begin{array}{cc}
\overbrace{\nabla^{g}+g^{-1} \circ C} & H I \\
g & d_{\mathbb{R}}
\end{array}\right)
$$

Consider the "coning"

$$
B^{n+1}=M \times(0,1) \xrightarrow{p} M
$$

Then

$$
F: T B \rightarrow p^{*} V, \quad F\left(v, \mu \partial_{r}\right)=(r v, \mu H)
$$

is bundle isomorphism; $\nabla_{B}:=F^{*} d_{V}$ and $\operatorname{det}_{B}:=F^{*} \operatorname{det}_{V}$ satisfy:

1. ∇_{B} is torsion-free, flat, and preserves $\operatorname{det}_{B} \leadsto B$ is flat special affine manifold.
2. $\pi_{1}(B) \cong \pi_{1}(M)$ and monodromy ρ of ∇_{B} and d_{V} are the same.

Elliptic/hyperbolic to parabolic affine spheres

For $H= \pm 1$ have flat connection on $V=T M \oplus \mathbb{R}$ over M^{n}

$$
d_{V}=\left(\begin{array}{cc}
\overbrace{\nabla^{g}+g^{-1} \circ C} & H I \\
g & d_{\mathbb{R}}
\end{array}\right)
$$

Consider the "coning"

$$
B^{n+1}=M \times(0,1) \xrightarrow{p} M
$$

Then

$$
F: T B \rightarrow p^{*} V, \quad F\left(v, \mu \partial_{r}\right)=(r v, \mu H)
$$

is bundle isomorphism; $\nabla_{B}:=F^{*} d_{V}$ and $\operatorname{det}_{B}:=F^{*} \operatorname{det}_{V}$ satisfy:

1. ∇_{B} is torsion-free, flat, and preserves $\operatorname{det}_{B} \leadsto B$ is flat special affine manifold.
2. $\pi_{1}(B) \cong \pi_{1}(M)$ and monodromy ρ of ∇_{B} and d_{V} are the same.
3. $\phi: B \rightarrow \mathbb{R}, \quad \phi(r)=-H \int_{0}^{r}\left(1-H \rho^{n+1}\right)^{\frac{1}{n+1}} d \rho, \quad H= \pm 1$ is convex, $\operatorname{det}_{B} \nabla_{B} d \phi=1$ and thus $\nabla_{B} d \phi$ is a Monge-Ampère metric on B.

2-dim affine spheres

2-dim affine spheres

Pick form C is g-tracefree \leadsto

$$
C=Q+\bar{Q}, \quad Q \in \Gamma\left(K^{3}\right)
$$

2-dim affine spheres

Pick form C is g-tracefree \leadsto

$$
C=Q+\bar{Q}, \quad Q \in \Gamma\left(K^{3}\right)
$$

Affine Gauss-Codazzi says rank 3 bundle $V=T M \oplus \mathbb{R}$ with

$$
d_{V}=\left(\begin{array}{cc}
\nabla^{g} & 0 \\
0 & d_{\mathbb{R}}
\end{array}\right)+\left(\begin{array}{cc}
g^{-1} \circ(Q+\bar{Q}) & g^{\dagger} \\
g & 0
\end{array}\right)
$$

is flat and preserves det_{V}. We have introduced the (pseudo) bundle metric $h=g \oplus H d t^{2}$ on V to separate the h-orthogonal and self-adjoint parts of d_{V}.

2-dim affine spheres

Pick form C is g-tracefree \leadsto

$$
C=Q+\bar{Q}, \quad Q \in \Gamma\left(K^{3}\right)
$$

Affine Gauss-Codazzi says rank 3 bundle $V=T M \oplus \mathbb{R}$ with

$$
d_{V}=\left(\begin{array}{cc}
\nabla^{g} & 0 \\
0 & d_{\mathbb{R}}
\end{array}\right)+\left(\begin{array}{cc}
g^{-1} \circ(Q+\bar{Q}) & g^{\dagger} \\
g & 0
\end{array}\right)
$$

is flat and preserves det_{V}. We have introduced the (pseudo) bundle metric $h=g \oplus H d t^{2}$ on V to separate the h-orthogonal and self-adjoint parts of d_{V}.

Flatness of $d_{V} \Longleftrightarrow$ Tzitzéica equation (1907) and holomorphicity of Q :

$$
2 \Delta_{g_{0}} u+2|Q|_{g_{0}}^{2} e^{-4 u}-H e^{2 u}-K_{0}=0, \quad \bar{\partial} Q=0
$$

$g=e^{2 u} g_{0}$ where g_{0} is a fixed conformal background metric on M.

2-dim affine spheres

Pick form C is g-tracefree \leadsto

$$
C=Q+\bar{Q}, \quad Q \in \Gamma\left(K^{3}\right)
$$

Affine Gauss-Codazzi says rank 3 bundle $V=T M \oplus \mathbb{R}$ with

$$
d_{V}=\left(\begin{array}{cc}
\nabla^{g} & 0 \\
0 & d_{\mathbb{R}}
\end{array}\right)+\left(\begin{array}{cc}
g^{-1} \circ(Q+\bar{Q}) & g^{\dagger} \\
g & 0
\end{array}\right)
$$

is flat and preserves det_{V}. We have introduced the (pseudo) bundle metric $h=g \oplus H d t^{2}$ on V to separate the h-orthogonal and self-adjoint parts of d_{V}.

Flatness of $d_{V} \Longleftrightarrow$ Tzitzéica equation (1907) and holomorphicity of Q :

$$
2 \Delta_{g_{0}} u+2|Q|_{g_{0}}^{2} e^{-4 u}-H e^{2 u}-K_{0}=0, \quad \bar{\partial} Q=0
$$

$g=e^{2 u} g_{0}$ where g_{0} is a fixed conformal background metric on M.
(Hyperbolic metric $g_{0}, u \equiv 0, Q \equiv 0$ solves for hyperbolic affine spheres ...)

Affine spheres to Higgs bundles and self-duality equations

Affine spheres to Higgs bundles and self-duality equations

Rewrite $\left(V=T M \oplus \underline{\mathbb{R}}, h=g \oplus H d t^{2}\right)$ with flat connection

$$
d_{V}=\left(\begin{array}{cc}
\nabla^{g} & 0 \\
0 & d_{\mathbb{R}}
\end{array}\right)+\left(\begin{array}{cc}
g^{-1} \circ(Q+\bar{Q}) & g^{\dagger} \\
g & 0
\end{array}\right)
$$

using $T M \otimes \mathbb{C}=K \oplus \bar{K}$ and $\bar{K} \cong K^{-1}$ via conformal metric g, as (pseudo) Hermitian bundle

$$
V \otimes \mathbb{C}=K^{-1} \oplus \underline{\mathbb{C}} \oplus K, \quad h=g \oplus H d t^{2} \oplus g^{-1}
$$

Affine spheres to Higgs bundles and self-duality equations

Rewrite $\left(V=T M \oplus \underline{\mathbb{R}}, h=g \oplus H d t^{2}\right)$ with flat connection

$$
d_{V}=\left(\begin{array}{cc}
\nabla^{g} & 0 \\
0 & d_{\mathbb{R}}
\end{array}\right)+\left(\begin{array}{cc}
g^{-1} \circ(Q+\bar{Q}) & g^{\dagger} \\
g & 0
\end{array}\right)
$$

using $T M \otimes \mathbb{C}=K \oplus \bar{K}$ and $\bar{K} \cong K^{-1}$ via conformal metric g, as (pseudo) Hermitian bundle

$$
V \otimes \mathbb{C}=K^{-1} \oplus \mathbb{C} \oplus K, \quad h=g \oplus H d t^{2} \oplus g^{-1}
$$

Then

$$
\begin{gathered}
d_{V}=D+\Phi+\Phi^{\dagger} \\
D=\nabla^{g} \oplus d \oplus\left(\nabla^{g}\right)^{*}, \quad \Phi=\left(\begin{array}{lll}
0 & \mathbf{1} & 0 \\
0 & 0 & 1 \\
Q & 0 & 0
\end{array}\right) \in \Omega^{1,0}(\mathbf{s l}(V \otimes \mathbb{C})) .
\end{gathered}
$$

Affine spheres to Higgs bundles and self-duality equations

Rewrite $\left(V=T M \oplus \underline{\mathbb{R}}, h=g \oplus H d t^{2}\right)$ with flat connection

$$
d_{V}=\left(\begin{array}{cc}
\nabla^{g} & 0 \\
0 & d_{\mathbb{R}}
\end{array}\right)+\left(\begin{array}{cc}
g^{-1} \circ(Q+\bar{Q}) & g^{\dagger} \\
g & 0
\end{array}\right)
$$

using $T M \otimes \mathbb{C}=K \oplus \bar{K}$ and $\bar{K} \cong K^{-1}$ via conformal metric g, as (pseudo) Hermitian bundle

$$
V \otimes \mathbb{C}=K^{-1} \oplus \mathbb{C} \oplus K, \quad h=g \oplus H d t^{2} \oplus g^{-1}
$$

Then

$$
\begin{gathered}
d_{V}=D+\Phi+\Phi^{\dagger} \\
D=\nabla^{g} \oplus d \oplus\left(\nabla^{g}\right)^{*}, \quad \Phi=\left(\begin{array}{lll}
0 & \mathbf{1} & 0 \\
0 & 0 & 1 \\
Q & 0 & 0
\end{array}\right) \in \Omega^{1,0}(\mathbf{s l}(V \otimes \mathbb{C})) .
\end{gathered}
$$

Tzitzéica equation $\Leftrightarrow d_{V}$ flat $\Leftrightarrow F^{D}+\left[\phi, \Phi^{\dagger}\right]=0, \quad \bar{\partial}^{D} \Phi=0$ $H=1: \mathbf{S U}_{3}$ self-duality eqns; $H=-1: \mathbf{S U}_{2,1}$ self-duality eqns.

Inventory

Inventory

Want to construct C-Y metrics on C-Y 3-folds fibered by special Lagrangian tori $\pi: X \rightarrow B_{0}$ degenerating along a trivalent graph $\Gamma \subset B_{0}$.

Inventory

Want to construct C-Y metrics on C-Y 3-folds fibered by special Lagrangian tori $\pi: X \rightarrow B_{0}$ degenerating along a trivalent graph $\Gamma \subset B_{0}$.

Equivalent to constructing Monge-Ampère metrics

$$
\nabla d \phi: T B \times T B \rightarrow \mathbb{R}, \quad \operatorname{det}_{B} \nabla d \phi=1
$$

on flat special affine real 3-manifold $B=B_{0} \backslash \Gamma$ with integral monodromy: flat torsion free ∇, parallel $\operatorname{det}_{B} \in \Omega^{3}(B, \mathbb{R})$, $\rho_{\nabla}: \pi_{1}(B) \rightarrow \mathbf{S L}_{3}(\mathbb{Z})$.

Inventory

Want to construct C-Y metrics on C-Y 3-folds fibered by special Lagrangian tori $\pi: X \rightarrow B_{0}$ degenerating along a trivalent graph $\Gamma \subset B_{0}$.

Equivalent to constructing Monge-Ampère metrics

$$
\nabla d \phi: T B \times T B \rightarrow \mathbb{R}, \quad \operatorname{det}_{B} \nabla d \phi=1
$$

on flat special affine real 3-manifold $B=B_{0} \backslash \Gamma$ with integral monodromy: flat torsion free ∇, parallel $\operatorname{det}_{B} \in \Omega^{3}(B, \mathbb{R})$, $\rho_{\nabla}: \pi_{1}(B) \rightarrow \mathbf{S L}_{3}(\mathbb{Z})$.
Solving Hitchin's self-duality equations on $K^{-1} \oplus \mathbb{C} \oplus K \rightarrow M$,

$$
F^{D}+\left[\Phi, \Phi^{\dagger}\right]=0, \quad \bar{\partial}^{D} \Phi=0, \quad \Phi=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
Q & 0 & 0
\end{array}\right)
$$

provides, via coning, examples of such $B=M \times(0,1)$ if

$$
d_{V}=D+\Phi+\Phi^{\dagger}
$$

has integral monodromy.

The Y-vertex

The Y-vertex

Base of special Lagrangian fibration $\pi: X \rightarrow B_{0}$ is $B_{0}=B \cup \Gamma$ with Γ trivalent graph. Simplest such is a vertex star: a Y-vertex.

The Y-vertex

Base of special Lagrangian fibration $\pi: X \rightarrow B_{0}$ is $B_{0}=B \cup \Gamma$ with Γ trivalent graph. Simplest such is a vertex star: a Y-vertex.

Y -vertex is obtained by coning a thrice punctured 2-sphere $M=S^{2} \backslash\left\{p_{1}, p_{2}, p_{3}\right\}$. So $B_{0}=S^{2} \times[0,1)$ is open 3-ball and $B=M \times(0,1)$ is obtained by removing a Y -vertex from an open 3-ball.

The Y-vertex

Base of special Lagrangian fibration $\pi: X \rightarrow B_{0}$ is $B_{0}=B \cup \Gamma$ with Γ trivalent graph. Simplest such is a vertex star: a Y -vertex.

Y-vertex is obtained by coning a thrice punctured 2-sphere $M=S^{2} \backslash\left\{p_{1}, p_{2}, p_{3}\right\}$. So $B_{0}=S^{2} \times[0,1)$ is open 3-ball and $B=M \times(0,1)$ is obtained by removing a Y -vertex from an open 3-ball.

We need to solve the self-duality equations

$$
F^{D}+\left[\Phi, \Phi^{\dagger}\right]=0, \quad \bar{\partial}^{D} \Phi=0
$$

equivalently, the Tzitzéica equation, for $g=e^{2 u} g_{0}$ and $Q \in \Gamma\left(K^{3}\right)$

$$
2 \Delta_{g_{0}} u+2|Q|_{g_{0}}^{2} e^{-4 u}-H e^{2 u}+1=0, \quad \bar{\partial} Q=0
$$

over thrice punctured sphere, where g_{0} is hyperbolic metric.

Loftin-Yau-Zaslow (JDG 2005)

There exists solution $u: S^{2} \backslash\left\{p_{1}, p_{2}, p_{3}\right\} \rightarrow \mathbb{R}$ of

$$
2 \Delta_{g_{0}} u+2|Q|_{g_{0}}^{2} e^{-4 u}-H e^{2 u}+1=0, \quad \bar{\partial} Q=0
$$

for sufficiently small meromorphic cubic differential Q with quadratic poles at the punctures $p_{k} \in S^{2}$ in the elliptic affine sphere case, $H=-1$. The metric $g=e^{2 u} g_{0}$ is asymptotic to a radially symmetric metric at the punctures.

Loftin-Yau-Zaslow (JDG 2005)

There exists solution $u: S^{2} \backslash\left\{p_{1}, p_{2}, p_{3}\right\} \rightarrow \mathbb{R}$ of

$$
2 \Delta_{g_{0}} u+2|Q|_{g_{0}}^{2} e^{-4 u}-H e^{2 u}+1=0, \quad \bar{\partial} Q=0
$$

for sufficiently small meromorphic cubic differential Q with quadratic poles at the punctures $p_{k} \in S^{2}$ in the elliptic affine sphere case, $H=-1$. The metric $g=e^{2 u} g_{0}$ is asymptotic to a radially symmetric metric at the punctures.

No information on the monodromy \leadsto C-Y 3-fold $X=T B$ fibered by sLag 3-planes, and not 3-tori.

LYZ use "wrong" affine sphere equations:
elliptic affine spheres are $\mathbf{S U}_{2,1}$ self-duality equations, for which the non-Abelian Hodge correspondence does not hold.
But it does hold for the compact SU_{3} case corresponding to hyperbolic affine spheres.

Parabolic non-Abelian Hodge correspondence

Parabolic non-Abelian Hodge correspondence

$M=\bar{M} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$ punctured compact Riemann surface and $\mathfrak{D}=\sum p_{k}$ the singularity divisor. There are bijections between the following moduli spaces (Hitchin 1987, Simpson 1990):

Parabolic non-Abelian Hodge correspondence

$M=\bar{M} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$ punctured compact Riemann surface and $\mathfrak{D}=\sum p_{k}$ the singularity divisor. There are bijections between the following moduli spaces (Hitchin 1987, Simpson 1990):

1. Degree zero holomorphic vector bundles $W \rightarrow \bar{M}$ of rank r and Higgs fields $\Phi \in H^{0}(K \mathbf{s l}(W) O(\mathfrak{D}))$ with nilpotent residues $\operatorname{Res}_{p_{k}} \Phi$-the Dolbeault space \mathcal{M}_{D}.

Parabolic non-Abelian Hodge correspondence

$M=\bar{M} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$ punctured compact Riemann surface and $\mathfrak{D}=\sum p_{k}$ the singularity divisor. There are bijections between the following moduli spaces (Hitchin 1987, Simpson 1990):

1. Degree zero holomorphic vector bundles $W \rightarrow \bar{M}$ of rank r and Higgs fields $\Phi \in H^{0}(K \mathbf{s l}(W) O(\mathfrak{D}))$ with nilpotent residues $\operatorname{Res}_{p_{k}} \Phi$-the Dolbeault space \mathcal{M}_{D}.
2. "Tame" solutions to the self-duality equations

$$
F^{D}+\left[\Phi, \Phi^{\dagger}\right]=0, \quad \bar{\partial}^{D} \Phi=0
$$

on M-the self-duality space $\mathcal{M}_{s d}$.

Parabolic non-Abelian Hodge correspondence

$M=\bar{M} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$ punctured compact Riemann surface and $\mathfrak{D}=\sum p_{k}$ the singularity divisor. There are bijections between the following moduli spaces (Hitchin 1987, Simpson 1990):

1. Degree zero holomorphic vector bundles $W \rightarrow \bar{M}$ of rank r and Higgs fields $\Phi \in H^{0}(K \mathbf{s l}(W) O(\mathfrak{D}))$ with nilpotent residues $\operatorname{Res}_{p_{k}} \Phi$-the Dolbeault space \mathcal{M}_{D}.
2. "Tame" solutions to the self-duality equations

$$
F^{D}+\left[\Phi, \Phi^{\dagger}\right]=0, \quad \bar{\partial}^{D} \Phi=0
$$

on M-the self-duality space $\mathcal{M}_{s d}$.
3. Representations $\rho: \pi_{1}(M) \rightarrow \mathbf{S L}_{r}(\mathbb{C})$-the Betti space \mathcal{M}_{B}.

Parabolic non-Abelian Hodge correspondence

$M=\bar{M} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$ punctured compact Riemann surface and $\mathfrak{D}=\sum p_{k}$ the singularity divisor. There are bijections between the following moduli spaces (Hitchin 1987, Simpson 1990):

1. Degree zero holomorphic vector bundles $W \rightarrow \bar{M}$ of rank r and Higgs fields $\Phi \in H^{0}(K \mathbf{s l}(W) O(\mathfrak{D}))$ with nilpotent residues $\operatorname{Res}_{p_{k}} \Phi$-the Dolbeault space \mathcal{M}_{D}.
2. "Tame" solutions to the self-duality equations

$$
F^{D}+\left[\Phi, \Phi^{\dagger}\right]=0, \quad \bar{\partial}^{D} \Phi=0
$$

on M-the self-duality space $\mathcal{M}_{s d}$.
3. Representations $\rho: \pi_{1}(M) \rightarrow \mathbf{S L}_{r}(\mathbb{C})$ the Betti space \mathcal{M}_{B}.

Nilpotency structure of $\operatorname{Res}_{p_{k}} \Phi$ is the same as unipotency structure of monodromy $\rho_{k} \in \mathbf{S L}_{r}(\mathbb{C})$ around p_{k}.

Non-Abelian Hodge over the thrice-punctured sphere

Non-Abelian Hodge over the thrice-punctured sphere

 Set $\bar{M}=S^{2}, M=S^{2} \backslash\left\{p_{1}, p_{2}, p_{3}\right\}$ the thrice-punctured sphere, singularity divisor $\mathfrak{D}=p_{1}+p_{2}+p_{3}$.Want to apply non-Abelian Hodge to our Higgs bundle

$$
V \otimes \mathbb{C}=K^{-1} \oplus \underline{\mathbb{C}} \oplus K \rightarrow M, \quad \Phi=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
Q & 0 & 0
\end{array}\right)
$$

Non-Abelian Hodge over the thrice-punctured sphere

 Set $\bar{M}=S^{2}, M=S^{2} \backslash\left\{p_{1}, p_{2}, p_{3}\right\}$ the thrice-punctured sphere, singularity divisor $\mathfrak{D}=p_{1}+p_{2}+p_{3}$.Want to apply non-Abelian Hodge to our Higgs bundle

$$
V \otimes \mathbb{C}=K^{-1} \oplus \underline{\mathbb{C}} \oplus K \rightarrow M, \quad \Phi=\left(\begin{array}{lll}
0 & \mathbf{1} & 0 \\
0 & 0 & 1 \\
Q & 0 & 0
\end{array}\right)
$$

Need to extend (the holomorphically trivial) bundle $V \otimes \mathbb{C}$ to $\bar{M}=S^{2}$ with $Q \in H^{0}\left(K_{S^{2}}^{3} O(2 \mathfrak{D})\right)$. This results in the Higgs bundle

$$
\begin{gathered}
W=O(-1) \oplus O \oplus O(1), \quad \Phi_{Q}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
Q & 0 & 0
\end{array}\right) \in H^{0}\left(K_{S^{2}} \mathbf{s}(W) O(\mathfrak{D})\right) \\
\operatorname{Res}_{p_{k}} \Phi=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \in \mathbf{s l}\left(W_{p_{k}}\right) .
\end{gathered}
$$

Non-Abelian Hodge over the thrice-punctured sphere

 Set $\bar{M}=S^{2}, M=S^{2} \backslash\left\{p_{1}, p_{2}, p_{3}\right\}$ the thrice-punctured sphere, singularity divisor $\mathfrak{D}=p_{1}+p_{2}+p_{3}$.Want to apply non-Abelian Hodge to our Higgs bundle

$$
V \otimes \mathbb{C}=K^{-1} \oplus \mathbb{C} \oplus K \rightarrow M, \quad \Phi=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
Q & 0 & 0
\end{array}\right)
$$

Need to extend (the holomorphically trivial) bundle $V \otimes \mathbb{C}$ to $\bar{M}=S^{2}$ with $Q \in H^{0}\left(K_{S^{2}}^{3} O(2 \mathfrak{D})\right)$. This results in the Higgs bundle

$$
\begin{aligned}
& W=O(-1) \oplus O \oplus O(1), \quad \Phi_{Q}=\left(\begin{array}{lll}
0 & \mathbf{1} & 0 \\
0 & 0 & 1 \\
Q & 0 & 0
\end{array}\right) \in H^{0}\left(K_{S^{2}} \mathbf{I}(W) O(\mathfrak{D})\right) \\
& \operatorname{Res}_{p_{k}} \Phi=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \in \mathbf{s l}\left(W_{p_{k}}\right) . \\
& \begin{array}{l}
K_{S^{2}}^{3} O(2 \mathfrak{D})=O(-2)^{3} O(6)=O \text {, so have } \mathbb{C} \text {-family of such Higgs } \\
\text { bundles }\left(W, \Phi_{Q}\right) .
\end{array}
\end{aligned}
$$

Non-Abelian Hodge and C-Y metrics

Non-Abelian Hodge and C-Y metrics

Theorem (S. Heller, Ouyang, - , 2022):

1. The \mathbb{C}-family $\left(W, \Phi_{Q}\right)$ parametrizes (real analytically) the $\mathrm{SL}_{3}(\mathbb{R})$ Hitchin component $\mathcal{C} \subset \mathcal{M}_{B}$ for the thrice-punctured sphere:

$$
\left(W, \Phi_{Q}\right) \longmapsto \rho_{Q}: \pi_{1}(M) \rightarrow \mathbf{S L}_{3}(\mathbb{R})
$$

Non-Abelian Hodge and C-Y metrics

Theorem (S. Heller, Ouyang, - , 2022):

1. The \mathbb{C}-family $\left(W, \Phi_{Q}\right)$ parametrizes (real analytically) the $\mathrm{SL}_{3}(\mathbb{R})$ Hitchin component $\mathcal{C} \subset \mathcal{M}_{B}$ for the thrice-punctured sphere:

$$
\left(W, \Phi_{Q}\right) \longmapsto \rho_{Q}: \pi_{1}(M) \rightarrow \mathbf{S L}_{3}(\mathbb{R})
$$

2. The corresponding solutions to the self-duality equations give a \mathbb{C}-family of solutions to the Tzitzéica equation for hyperbolic affine spheres on the thrice-punctured sphere asymptotic to the hyperbolic cusp metric at the punctures $p_{k} \in S^{2}$.

Non-Abelian Hodge and C-Y metrics

Theorem (S. Heller, Ouyang, - , 2022):

1. The \mathbb{C}-family $\left(W, \Phi_{Q}\right)$ parametrizes (real analytically) the $\mathrm{SL}_{3}(\mathbb{R})$ Hitchin component $\mathcal{C} \subset \mathcal{M}_{B}$ for the thrice-punctured sphere:

$$
\left(W, \Phi_{Q}\right) \longmapsto \rho_{Q}: \pi_{1}(M) \rightarrow \mathbf{S L}_{3}(\mathbb{R})
$$

2. The corresponding solutions to the self-duality equations give a \mathbb{C}-family of solutions to the Tzitzéica equation for hyperbolic affine spheres on the thrice-punctured sphere asymptotic to the hyperbolic cusp metric at the punctures $p_{k} \in S^{2}$.
3. Coning provides a \mathbb{C}-family of non-isometric Monge-Ampère metrics on B, the open 3-ball deleted a Y -vertex, and thus a \mathbb{C}-family of non-isometric $\mathrm{C}-\mathrm{Y}$ metrics on the sLag fibration $X=T B \rightarrow B$.

A Diophantine problem

A Diophantine problem

The \mathbb{C}-family of $\mathrm{C}-\mathrm{Y}$ metrics on $X_{\mid B}=T B$ descends to a sLag 3-torus fibrations $T B / \Lambda \rightarrow B \Longleftrightarrow$
$\Gamma \subset T B$ is ∇-parallel lattice bundle \Longleftrightarrow
$\rho_{Q}: \pi_{1}(M) \rightarrow \mathbf{S L}_{3}(\mathbb{Z})$.

A Diophantine problem

The \mathbb{C}-family of C-Y metrics on $X_{\mid B}=T B$ descends to a sLag 3-torus fibrations $T B / \Lambda \rightarrow B \Longleftrightarrow$
$\Gamma \subset T B$ is ∇-parallel lattice bundle \Longleftrightarrow $\rho_{Q}: \pi_{1}(M) \rightarrow \mathbf{S L}_{3}(\mathbb{Z})$.

Need to understand the monodromy of solutions to the Tzitzéica equation for hyperbolic affine spheres, or equivalently, for which Higgs bundles $\left(W, \Phi_{Q}\right)$ the-via non-Abelian Hodge-corresponding representation ρ_{Q} is integral.

A Diophantine problem cont.

A Diophantine problem cont.

Theorem (S. Heller, Ouyang, - , 2022):

1. The character map

$$
X: \mathcal{M}_{B} \rightarrow \mathbb{C}^{3}, \quad X_{\rho}=\left(\begin{array}{c}
\operatorname{tr}\left(\rho_{1} \rho_{2}^{-1}\right) \\
\operatorname{tr}\left(\rho_{1}^{-1} \rho_{2}\right) \\
\operatorname{tr}\left(\rho_{1} \rho_{2} \rho_{1}^{-1} \rho_{2}^{-1}\right)
\end{array}\right)
$$

is a biholomorphism onto the cubic affine variety

$$
\mathcal{F}=\left\{414-108 x+x^{3}-108 y+21 x y+y^{3}-(51-9 x-9 x+x y) z+z^{2}=0\right\}
$$

A Diophantine problem cont.

Theorem (S. Heller, Ouyang, - , 2022):

1. The character map

$$
X: \mathcal{M}_{B} \rightarrow \mathbb{C}^{3}, \quad X_{\rho}=\left(\begin{array}{c}
\operatorname{tr}\left(\rho_{1} \rho_{2}^{-1}\right) \\
\operatorname{tr}\left(\rho_{1}^{-1} \rho_{2}\right) \\
\operatorname{tr}\left(\rho_{1} \rho_{2} \rho_{1}^{-1} \rho_{2}^{-1}\right)
\end{array}\right)
$$

is a biholomorphism onto the cubic affine variety

$$
\mathcal{F}=\left\{414-108 x+x^{3}-108 y+21 x y+y^{3}-(51-9 x-9 x+x y) z+z^{2}=0\right\}
$$

2. $\mathcal{F}(\mathbb{R})=\mathcal{F} \cap \mathbb{R}^{3}$ corresponds via X to the real representations in \mathcal{M}_{B} and has two connected components: the Hitchin component and the component of the trivial representation.

A Diophantine problem cont.

Theorem (S. Heller, Ouyang, - , 2022):

1. The character map

$$
X: \mathcal{M}_{B} \rightarrow \mathbb{C}^{3}, \quad X_{\rho}=\left(\begin{array}{c}
\operatorname{tr}\left(\rho_{1} \rho_{2}^{-1}\right) \\
\operatorname{tr}\left(\rho_{1}^{-1} \rho_{2}\right) \\
\operatorname{tr}\left(\rho_{1} \rho_{2} \rho_{1}^{-1} \rho_{2}^{-1}\right)
\end{array}\right)
$$

is a biholomorphism onto the cubic affine variety

$$
\mathcal{F}=\left\{414-108 x+x^{3}-108 y+21 x y+y^{3}-(51-9 x-9 x+x y) z+z^{2}=0\right\}
$$

2. $\mathcal{F}(\mathbb{R})=\mathcal{F} \cap \mathbb{R}^{3}$ corresponds via X to the real representations in \mathcal{M}_{B} and has two connected components: the Hitchin component and the component of the trivial representation.
3. $\mathcal{F}(\mathbb{Z})=\mathcal{F} \cap \mathbb{Z}^{3}$ has infinitely many points in each component which correspond via X to integral representations $\rho: \pi_{1}(M) \rightarrow \mathbf{S L}_{3}(\mathbb{Z})$.

Some examples

$\left.\begin{array}{|c|c|c|c|c|c|}\hline(s, t) & x & y & z & \rho_{1} & \rho_{2} \\ \hline \hline(1,3) & 84 & 84 & 256 & \left(\begin{array}{ccc}1 & 9 & 0 \\ 0 & 1 & 9 \\ 0 & 0 & 1\end{array}\right) & \left(\begin{array}{ccc}0 & 1 & -7 \\ 0 & -1 & 8 \\ 1 & 0 & 4\end{array}\right) \\ \hline(3,20) & 35 & 99 & 643 & \left(\begin{array}{ccc}1 & 11 & 32 \\ 0 & 97 & 288 \\ 0 & -32 & -95\end{array}\right)\end{array}\right) \left.\left(\begin{array}{ccc}0 & 1 & 3 \\ 0 & 21 & 64 \\ 1 & -6 & -18\end{array}\right) \right\rvert\,\left(\begin{array}{ccc}0 & 1 & -1 \\ 2 & -1 & 2 \\ 7 & -1 & -4\end{array}\right)$.

At this point, we do not know whether all integer points $\mathcal{F}(\mathbb{Z}) \subset \mathcal{F}$ in the character variety give rise to integral representations, nor can we characterize all integer points.

Theorem (S. Heller, Ouyang, - , 2022): There exists infinitely many non-isometric Calabi-Yau metrics on sLag 3-torus fibrations

$$
\pi: X=T B / \Lambda \rightarrow B
$$

where B is an open 3-ball deleted a Y -vertex.

