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Riemannian Geometry

Let M be a smooth manifold.

The study of the geometry of M is achieved by equipping M with a
Riemannian metric g , which is a smooth assignment of an inner product
to each tangent space. We can write g in local co-ordinates with gij =
g(∂xi , ∂xj ).

The Ricci curvature is a qausi-linear second order partial differential op-
erator Ric : {Riemannian metrics} → {symmetric (0, 2)-tensor fields}.
Ricci curvautre is diffeomorphism-invariant, and is therefore not elliptic.



Riemannian Geometry

Many important problems in Riemannian geometry are studied through
the study of solutions to equations involving Ricci curvature:

� The Einstein equation Ric(g) = λg for some constant λ. Solutions
are the ‘ideal’ geometries;

� The prescribed Ricci curvature equation Ric(g) = T asks what
symmetric tensors T are actually available as Ricci curvature of
some metric g .

� The Ricci flow ∂g
∂t = −2Ric(g) evolves a Riemannian metric in the

direction of its curvature to hopefully ‘improve’ its geometry.

Ricci flow is an excellent tool for positive curvature geometries, but is
less useful for negative curvature geometries.



Cross curvature

� Let (M, g) be a smooth Riemannian manifold with its scalar
curvature S(g) = trgRic(g) and its Einstein tensor field

E (g) = Ric(g)− S(g)g
2 .

� Let E(g) be the linear operator corresponding to E (g), i.e.,
E(g) = E (g)].

� The cross curvature of g is the symmetric (0, 2)-tensor field

X (g) = det(E(g))g(E−1·, ·),

which exists whenever E(g) is invertible on all of M.

� Studied almost exclusively for three-dimensional manifolds.



Cross curvature flow

� Chow-Hamilton, ’04:
I Introduction of the cross curvature flow ∂g

∂t
= X (g) on

three-manifolds;
I Second contracted Bianchi identities for X (g);
I The IVP is well-posed for initial metrics of negative (or positive)

sectional curvature (Nash-Moser approach);
I Monotonicity formulas;
I Negative sectional curvature is preserved.

� Buckland, ’05: a more geometric approach to well-posedness of
IVP (DeTurck trick).

� Andrews-Chen-Fang-McCoy, ’15: Convergence to hyperbolic
metrics in case the initial metric satisfies an integrability condition.



The prescribed cross curvature equation

Conjecture (Hamilton, ’08):

Given any positive symmetric (0, 2)-tensor field T on S3, there exists a
unique Riemannian metric g satisfying

X (g) = T .

� Gkigkitzis ’08: Conjecture is true if g and T are both assumed to
be left-invariant on SU(2).

� Hartley: local existence for positive T.



The prescribed cross curvature equation

Regularity:

Theorem (B-Pulemotov, ’23)

If g ∈ C 3 is a metric solving X (g) = T in a neighbourhood of the point
p, and T (p) > 0, then g ∈ C k,α whenever T ∈ C k,α, (k, α) ∈ N×(0, 1).

Compare with:

Theorem (DeTurck-Kazdan, ’81)

If g ∈ C 2 is a metric solving Ric(g) = T in a neighbourhood of the point
p, and T (p) is non-degenerate, then g ∈ C k,α whenever T ∈ C k,α,
(k, α) ∈ N× (0, 1).

The additional assumptions that g ∈ C 3 and T (p) > 0 are related to
the fact that X (g) is fully non-linear (with principal symbol dependent
on the Einstein tensor), whereas Ric(g) is quasi-linear.



The prescribed cross curvature equation

Close to the round sphere:

Theorem (B-Pulemotov, ’23)

Let g0 be the round metric on S3 with Einstein constant 2. If k > 9
2

and T is close to g0 in Hk , then there is a g so that X (g) = T . If T is
smooth, then g is smooth.

Proof is by decomposing Hk(S2T ∗M) = Hk(ker δ) ⊕ δ∗Hk+1(T ∗M)
because:

� X ′(g0) is elliptic and injective on Hk(ker δ);

� X ′(g0) is not elliptic on δ∗Hk+1(T ∗M), but this is precisely the
tangent space of the action of the Hk+1 diffeomorphism group.



The prescribed cross curvature equation

With symmetries:

Theorem (B-Pulemotov, ’23)

Suppose T > 0 is O(2) × O(2)-invariant and ‘diagonal’ on S3. Then
there is a g on S3 satisfying X (g) = T .

The group action is given by the embedding S3 ⊂ R2 × R2, with O(2)
acting on each R2 factor. The principal orbits are S1 × S1, and the
singular orbits are two copies of S1.



The prescribed cross curvature equation

Proof 1/2 (Setting up the ODE problem)

� The principal part of the cohomogeneity one action is
(0, 1)× S1 × S1; we will look at

T = dr 2 + y1(r)2dθ21 + y2(r)2dθ22, g = h(r)2dr 2 + f1(r)2dθ21 + f2(r)2dθ22.

� Using li = − f ′i
h , φ1 = y1

y2
, φ2 = y2

y1
, σ = y1y2, the equations become(

l ′1
φ1

)′
=

l1l
2
2

σ
,

(
l ′2
φ2

)′
=

l21 l2
σ
, r ∈ (0, 1). (1)

� The required boundary conditions come from insisting that both g
and T are actually smooth at the singular orbits:
I At r = 0, l1 is even, l1(0) = −1, l2 is odd, y1 is odd, y ′

1(0) = 1, y2
is even and y2(0) > 0.

I At r = 1, l2 is even, l2(1) = 1, l1 is odd, y2 is odd, y ′
2(1) = −1, y1

is even and y1(0) > 0.



The prescribed cross curvature equation

Proof 2/2 (Solving the ODEs):

� Study the IVP near each singular orbit; with the arbitrary
prescription of two real parameters at each end, the local IVP is
well-posed.

� Show that, for any solution of(
l ′1
φ1

)′
=

l1(pl2 + (1− p) sin πr
2 )2

σ
,(

l ′2
φ2

)′
=

l2(pl1 − (1− p) cos πr2 )2

σp
, r ∈ (0, 1), (2)

the four parameters are bounded independently of p ∈ [0, 1].

� When p = 0, the equations are linear, decoupled and
non-degenerate; topological degree theory implies existence for
p = 1.



The prescribed cross curvature equation

With more symmetries:

Theorem (B-Pulemotov, ’23)

Suppose T > 0 is O(3)-invariant on S3. Then there is an O(3)-invariant
g on S3 satisfying X (g) = T .

Compare:

Theorem (Hamilton, ’84)

Suppose T > 0 is O(3) × Z2-invariant on S3. Then there is a g and
a c > 0 on S3 satisfying Ric(g) = cT if T itself has positive Ricci
curvature.

Existence within class of O(3) × Z2-invariant metrics may fail without
the assumption that T has positive Ricci curvature.



The prescribed cross curvature equation

Proof 1/2 (Setting up the ODE problem)

� The principal part of the cohomogeneity one action is (−1, 1)× S2;
let Q be the standard metric on S2, look at T = dr2 + y(r)2Q and
g = h(r)2dr2 + f (r)2Q.

� Using l = − f ′

h , σ = y2, the equations become

l ′′ =
l3 − l

σ
. (3)

� Boundary conditions come from insisting that both g and T are
smooth at the singular orbits: At r ± 1, l is even, l = ±1, σ is
vanishing and even with σ′′ = 2.

� We also need to insist that l ′(r) > 0 for each r ∈ (−1, 1), for the
metric to be positive-definite.



The prescribed cross curvature equation

Proof 2/2 (Solving the ODE)

� At each singular orbit, the local IVP is well-posed with the
prescription of one real parameter.

� Show that, for any continuous deformation of σp, p ∈ [0, 1],

solutions to l ′′ = l3−l
σp

have the two parameters α, β bounded

independently of p.

� There is a special choice of σ0 so that the problem has a non-zero
degree, and the solution has l ′ > 0 on the interior.

� Topological degree theory implies the existence of a continuum of
solutions hitting every possible p. The condition l ′ > 0 survives
through the continuum.
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The prescribed cross curvature equation

Theorem (B-Pulemotov, ’23) There is an O(3)-invariant T > 0 on S3
so that X (g) = T has at least three distinct solutions. Two of these
solutions are isometric, but not isometric to the third.

Therefore, the uniqueness component of Hamilton’s conjecture is false.



The prescribed cross curvature equation

Proof

� We are trying to find a choice of positive σ so that l ′′ = l3−l
σ has

at least three solutions, with l crossing from −1 to 1.

� If we insist that σ is even about r = 0, we can always find a
solution l which is odd about r = 0.

� This solution encounters a pitchfork bifurcation by making σ quite
small on the interior.



Some concluding remarks

� These results suggest that X (g) = T might always be globally
solvable on S3 for T > 0 (though not uniquely).

� This is in constrast to the equation Ric(g) = cT for T > 0 on S3;
there are cohomogeneity one T > 0 for which there are no
cohomogeneity one solutions g .

� Is there a useful variational interpretation?


