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The Einstein-Hilbert action

Let M be a smooth, connected and closed manifold, and M the set of
Riemannian metrics on M. The Einstein-Hilbert action is the function
S :M→ R with

S(g) =

∫
M

S(g)dVg ,

where S(g) is the scalar curvature of g , and dVg is the volume form of
g .

Theorem

Critical points of the Einstein-Hilbert functional subject to the constraint∫
M
dVg = 1 are precisely Einstein metrics.



Topology and Geometry on M

M is an infinite-dimensional Fréchet manifold. For any g ∈ M and
h, k ∈ TgM, the L2 or Ebin Riemannian structure E on M is found by
specifying

Eg (h, k) =

∫
M

g(h, k)dVg .

Theorem (Freed-Groisser, ’89)

An Ebin geodesic starting at g with initial velocity h is given by

γ(t)(X ,Y ) =
(
q(t)2 + r2t2

) n
2 g

(
exp

(
4√

ntr(H2
0 )

arctan(
r(t)

q(t)
)H0

)
X ,Y

)
,

where H0 is the trace-free part of g−1h, q(t) = 1 + t
4 tr(H0), r =

1
4

√
ntr(H2

0 ).



Volume forms and diffeomorphisms

Fix a volume form µ on M, and consider Mµ ⊂M, the set of Rieman-
nian metrics g with volume form µ.
Mµ contains all Riemannian structures:

Theorem (Moser, ’65)

For any two Riemannian metrics g1, g2 on M, there is a diffeomorphism
φ : M → M and a scale c > 0 so that cφ∗(g1) has the same volume
form as g2.

The intrinsic geodesics of Mµ ⊂ M have the form γt(·, ·) =
g0(exp(tH)·, ·), where tr(H) = 0.

Main idea: study the asymptotics of the E-H functional using these
geodesics.



Reducing the complexity of the Einstein-Hilbert functional

To understand the E-H functional

S(g) =

∫
M

S(g)dVg ,

Moser’s result implies that it suffices to pick a reference Riemannian
metric g0 with volume form µ0, and study∫

M

S(γH(t))µ0,

where γH(t)(·, ·) = g0(exp(tH)·, ·), with H self-adjoint (w.r.t. g0) and
traceless.

So we can focus on the scalar curvature of γH(t), rather than the scalar
curvature of γH(t) multiplied by its volume element.



Scalar curvature along homogeneous Ebin geodesics

If G is a compact Lie group of diffeomorphisms on M, then we defineMG

to be the G -invariant Riemannian metrics on M. Critical points of the
E-H functional restricted to unit-volume metrics onMG are G -invariant
Einstein metrics.

If G acts transitively on M, then

� M = G/H is a homogeneous space, where H is the isotropy
subgroup of a fixed point,

� MG is finite-dimensional, and

� the scalar curvature of a metric g ∈MG is constant.



Scalar curvature along homogeneous Ebin geodesics

Let Q be a unit-volume bi-invariant metric on G . Choose m to be the
Q-orthogonal complement of h in g. Then homogeneous Ebin geodesics
starting at Q on M are given by

γ(t) =
l∑

i=1

etviQ|mi ,

where {vi}li=1 ⊂ R, and m =
⊕l

i=1 mi is a choice of Ad(H)-
irreducible and Q-orthogonal decomposition. The volume 1 constraint
is
∑l

i=1 divi = 0, where di = dim(mi ). We can also assume that∑l
i=1 div

2
i = 1.



Scalar curvature along homogeneous Ebin geodesics

The scalar curvature is given by

S(γ(t)) =
1

2

l∑
i=1

dibie
−vi t − 1

4

l∑
i,j,k=1

[ijk]et(vi−vj−vk ),

where

� [ijk] =
∑
µ,ν,ρQ([Xµ,Yν ],Zρ)2, {Xµ}, {Yν}, {Zρ} are

Q-orthonormal bases for mi ,mj ,mk respectively,

� bi = − Bmi

Q|mi
, B is the Killing form of g.

Asymptotic behaviour is determined by a competition be-
tween the two non-negative terms 1

2

∑l
i=1 dibie

−vi t and
1
4

∑l
i,j,k=1[ijk]et(vi−vj−vk ).



Scalar curvature along homogeneous Ebin geodesics

Recall

S(γ(t)) =
1

2

l∑
i=1

dibie
−vi t − 1

4

l∑
i,j,k=1

[ijk]et(vi−vj−vk ).

Since
∑l

i=1 divi = 0 and
∑l

i=1 div
2
i = 1, at least one vi is negative, so

there are terms with potentially exponential growth.
If vk is the smallest, and vj < vi , then [ijk]et(vi−vj−vk ) will dominate all
of the dibie

−vi t terms unless [ijk] = 0.

Therefore, S(γ(t)) converges to −∞ except for special choices of
v and decomposition of m.



Scalar curvature along homogeneous Ebin geodesics

The vanishing of some of the [ijk] terms is related to the existence of
intermediate subgroups between H and G . Böhm-Wang-Ziller associate a
graph to G/H which contains information about intermediate subgroups.

Theorem (Böhm-Wang-Ziller, ’04)

Let G/H be a compact homogeneous space. If the graph of G/H has
at least two non-toral components, then G/H admits a homogeneous
Einstein metric.

This is proven by the Mountain-Pass Theorem, once they have enough
compactness.

Theorem (Böhm-Wang-Ziller, ’04)

Let G/H be a compact homogeneous space. If the graph of G/H has
at least two non-toral components, then G/H admits a homogeneous
Einstein metric. Let G/H be a homogeneous space. Then for each ε > 0,
the scalar curvature functional satisfies the Palais-Smale compactness
condition on the set of unit-volume, G -invariant Riemannian metrics
that have scalar curvature at least ε.



Scalar curvature along Ebin geodesics

Motivating question: can these techniques be used to construct Ein-
stein metrics without homogeneous symmetry?
To do this, we would need to

� obtain a satisfactory compactness theory, and

� understand scalar curvature asymptotics.

The first looks quite challenging:

Theorem (Böhm, ’98)

For each n ∈ [5, 9], there exists a sequence of unit-volume Einstein met-
rics on Sn which converge to a non-smooth Einstein metric with positive
scalar curvature (thus breaking Palais-Smale compactness).



Scalar curvature along Ebin geodesics

What about curvature asymptotics? Recall that Ebin geodesics starting
at a Riemannian metric g0 look like

γH(t)(·, ·) = g0(exp(tH)·, ·),

where H is traceless, and self-adjoint with respect to g0.

Theorem (Böhm-B-Clarke)

Suppose dim(M) ≥ 5. There exists an open and dense set of H (in the
Whitney C∞ topology) for which

lim
t→∞

S(γH(t)) = −∞

uniformly on M.



Scalar curvature along Ebin geodesics

First, we need a formula for the scalar curvature. Let us first assume
that there is a local g0-orthonormal frame {e1, · · · , en} diagonalising H
with strictly increasing eigenvalues (λ1, · · · , λn).

Lemma

We have

R(gt) =
∑
i 6=j 6=k

e(λk−λi−λj )t · F k
ij +

n∑
i=1

e−λi t · (t2F (2)
i + tF

(1)
i + F

(0)
i ),

where F k
ij = − 1

4g0([ei , ej ], ek)2, and F
(j)
i is independent of t.

With enough of the F k
1j terms (with 1 < j < k), we can perturb (using

theory of under-determined PDES) so that at least one is non-zero, and
scalar curvature goes to −∞.



Scalar curvature along Ebin geodesics

But what if we have eigenvalue bifurcations? For any traceless H and
any point p ∈ M, let (λ1, · · · , λL) be the eigenvalues of H in increasing
order, occuring with multiplicities (m1, · · · ,mL). Then there is a local

g0-orthonormal frame e =
⋃L

i=1{eia}
mi
a=1 in which H takes the block

diagonal form

H =


λ1Im1 + S1 0 · · · 0

0 λ2Im2 + S2 · · · 0
...

...
. . .

...
0 0 · · · λLImL

+ SL

 ,

where Si is a traceless and symmetric mi ×mi matrix. We have λ1 < 0,
unless all λi s vanish.



Scalar curvature along Ebin geodesics

To compute the scalar curvature, we use the γH(t)-orthonormal frame⋃L
i=1{etia}

mi
a=1, where for i = 1, ..., L and ã = 1, ...,mi

etiã = 1√
αi (t)
·

mi∑
a=1

exp
(
− Si t

2

)
aã
· eia , αi (t) = exp(λi t).

Then we define the Christoffel symbols

(Γt)
kc
ia,jb

= γH(t)([etia , e
t
jb ], etkc ) + γH(t)([etkc , e

t
jb ], etia) + γH(t)([etkc , e

t
ia ], e

t
jb).

The scalar curvature S(γH(t)) is given by

S(γH(t)) = 2
∑
ia,jb

etia(Γt)
ia
jb,jb
−
∑

ia,jb,kc

(
(Γt)

kc
ia,ia

(Γt)
kc
jb,jb

+ (Γt)
jb
ia,kc

(Γt)
jb
kc ,ia

)
.



Scalar curvature along Ebin geodesics

The term
∑

ia,jb,kc

(
(Γt)

jb
ia,kc

(Γt)
jb
kc ,ia

)
contains a sum of squares of

γH(t)([etia , e
t
jb

], etkc ). The ones with 1 = i ≤ j < k will have the most
powerful exponential growth, provided

g0([eia , ejb ], ekc ) 6= 0

for some a ≤ mi , b ≤ mj , c ≤ mk .

If n = dim(M) and we have at least n+ 1 of these terms, we can perturb
the g0-orthonormal frame so that at least one of them is non-zero.



Scalar curvature along Ebin geodesics

How can we ensure there are enough of these terms?
If for example, M is two dimensional, and H has a local (x , y) co-ordinate
expression

H =

(
x y
y −x

)
,

then the existence of a point with H = 0 cannot be perturbed away.
However, if M is at least three-dimensional, then we can generically
avoid H = 0.



Scalar curvature along Ebin geodesics

What about other problematic multiplicities? Sym0(n) admits a stratifi-
cation according to these eigenvalue multiplicities.

Theorem

This stratification satisfies Whitney’s transversality conditions.

Therefore, we can generically assume that all of the intersections of H
with non-trivial multiplicities are transversal. This implies that not all
eigenvalue multiplicities can occur. Starting in dimension five, we get
enough terms.



Some concluding remarks

� We have shown that, generically, scalar curvature converges
uniformly to −∞ along volume-form-preserving Ebin geodesics,
starting in dimension five.

� The work of Böhm-Wang-Ziller shows that there can exist
Ebin-geodesics where scalar curvature tends to +∞.

� In dimension two, Gauss-Bonnet is an obstruction.

� In dimension three:
I There are choices of H admitting points with

limt→∞ S(γH(t)) =∞ that cannot be perturbed away;
I E-H functional generically goes to −∞;
I Any orientable three-manifold is parallelisable.

� In dimension four, E-H functional generically goes to −∞, but it is
hard to say much more.

� New Einstein metrics? Do Palais-Smale sequences converge to
Einstein metrics with singularities?


