PhD Student Symposium: Machine Learning and Decision Making: Theory, Algorithms and Applications

David Wood

  •  17 Mar 2022 - 18 Mar 2022
     8:00 am - 5:00 pm

Organisers:
Jun Ju (The University of Queensland)
Yeming Lei (The University of Queensland)
David Maine (The University of Queensland)

Description:
Machine learning and decision making, considered essential parts in artificial intelligence, play an increasingly important role in providing solutions to complex problems in a broad range of domains.This includes but is not limited to image recognition, self-driving cars, virtual personal assistants,games and adaptive natural resource management.

Recently, the field has made significant advances through an interplay of theory, algorithms and applications. For example, mathematical and statistical theories play a multi-faceted role: powering the design, analysis and improvement of algorithms; providing insights on when and why algorithms work; constructing guidelines on how to effectively apply algorithms in applications from different disciplines. In addition, the emergence of challenging applications stimulates the development of more powerful algorithms and new theories.

This symposium calls for the participation of PhD students working on the theory, algorithms and applications in the field of machine learning and decision making. It aims to bring together students from all related disciplines to present their research to a wide audience, as well as to connect, interact, and exchange ideas with other students. The symposium will include a series of invited talks, tutorials,student contributed talks, and a number of events to encourage discussion and collaboration between students.

Symposium webpage: https://david-maine.github.io/symposium/

Contact:
If you have any questions, please contact David Maine at d.maine@uqconnect.edu.au

Sponsors:
This symposium is supported by MATRIX and AMSI.
To support post-symposium research collaboration between PhD student participants, MATRIX-AMSI are providing funding through the MATRIX-AMSI PhD Student Research Collaboration Schemehttps://www.matrix-inst.org.au/phd-student-research-collaboration-scheme-guidelines/


Sponsors:
This symposium is supported by MATRIX and AMSI.